Displaying similar documents to “The rigidity theorem for Landsberg hypersurfaces of a Minkowski space”

Hypersurfaces with constant curvature in n + 1

J. A. Gálvez, A. Martínez (2002)

Banach Center Publications

Similarity:

We give some optimal estimates of the height, curvature and volume of compact hypersurfaces in n + 1 with constant curvature bounding a planar closed (n-1)-submanifold.

A framed f-structure on the tangent bundle of a Finsler manifold

Esmaeil Peyghan, Chunping Zhong (2012)

Annales Polonici Mathematici

Similarity:

Let (M,F) be a Finsler manifold, that is, M is a smooth manifold endowed with a Finsler metric F. In this paper, we introduce on the slit tangent bundle T M ˜ a Riemannian metric G̃ which is naturally induced by F, and a family of framed f-structures which are parameterized by a real parameter c≠ 0. We prove that (i) the parameterized framed f-structure reduces to an almost contact structure on IM; (ii) the almost contact structure on IM is a Sasakian structure iff (M,F) is of constant flag...

Hypersurfaces with constant k -th mean curvature in a Lorentzian space form

Shichang Shu (2010)

Archivum Mathematicum

Similarity:

In this paper, we study n ( n 3 ) -dimensional complete connected and oriented space-like hypersurfaces M n in an (n+1)-dimensional Lorentzian space form M 1 n + 1 ( c ) with non-zero constant k -th ( k < n ) mean curvature and two distinct principal curvatures λ and μ . We give some characterizations of Riemannian product H m ( c 1 ) × M n - m ( c 2 ) and show that the Riemannian product H m ( c 1 ) × M n - m ( c 2 ) is the only complete connected and oriented space-like hypersurface in M 1 n + 1 ( c ) with constant k -th mean curvature and two distinct principal curvatures, if the multiplicities...

Complete spacelike hypersurfaces with constant scalar curvature

Schi Chang Shu (2008)

Archivum Mathematicum

Similarity:

In this paper, we characterize the n -dimensional ( n 3 ) complete spacelike hypersurfaces M n in a de Sitter space S 1 n + 1 with constant scalar curvature and with two distinct principal curvatures one of which is simple.We show that M n is a locus of moving ( n - 1 ) -dimensional submanifold M 1 n - 1 ( s ) , along M 1 n - 1 ( s ) the principal curvature λ of multiplicity n - 1 is constant and M 1 n - 1 ( s ) is umbilical in S 1 n + 1 and is contained in an ( n - 1 ) -dimensional sphere S n - 1 ( c ( s ) ) = E n ( s ) S 1 n + 1 and is of constant curvature ( d { log | λ 2 - ( 1 - R ) | 1 / n } d s ) 2 - λ 2 + 1 ,where s is the arc length of an orthogonal trajectory...