Displaying similar documents to “Numerical approximations of parabolic differential functional equations with the initial boundary conditions of the Neumann type”

Difference methods for parabolic functional differential problems of the Neumann type

K. Kropielnicka (2007)

Annales Polonici Mathematici

Similarity:

Nonlinear parabolic functional differential equations with initial boundary conditions of the Neumann type are considered. A general class of difference methods for the problem is constructed. Theorems on the convergence of difference schemes and error estimates of approximate solutions are presented. The proof of the stability of the difference functional problem is based on a comparison technique. Nonlinear estimates of the Perron type with respect to the functional variable for given...

Implicit difference methods for quasilinear parabolic functional differential problems of the Dirichlet type

K. Kropielnicka (2008)

Applicationes Mathematicae

Similarity:

Classical solutions of quasilinear functional differential equations are approximated with solutions of implicit difference schemes. Proofs of convergence of the difference methods are based on a comparison technique. Nonlinear estimates of the Perron type with respect to the functional variable for given functions are used. Numerical examples are given.

Implicit difference schemes for mixed problems related to parabolic functional differential equations

Milena Netka (2011)

Annales Polonici Mathematici

Similarity:

Solutions of initial boundary value problems for parabolic functional differential equations are approximated by solutions of implicit difference schemes. The existence and uniqueness of approximate solutions is proved. The proof of the stability is based on a comparison technique with nonlinear estimates of the Perron type for given operators. It is shown that the new methods are considerably better than the explicit difference schemes. Numerical examples are presented.

Continuity of the quenching time in a semilinear parabolic equation

Théodore Boni, Firmin N'Gohisse (2008)

Annales UMCS, Mathematica

Similarity:

In this paper, we consider the following initial-boundary value problem [...] where Ω is a bounded domain in RN with smooth boundary ∂Ω, p > 0, Δ is the Laplacian, v is the exterior normal unit vector on ∂Ω. Under some assumptions, we show that the solution of the above problem quenches in a finite time and estimate its quenching time. We also prove the continuity of the quenching time as a function of the initial data u0. Finally, we give some numerical results to illustrate our...

The problem of data assimilation for soil water movement

François-Xavier Le Dimet, Victor Petrovich Shutyaev, Jiafeng Wang, Mu Mu (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The soil water movement model governed by the initial-boundary value problem for a quasilinear 1-D parabolic equation with nonlinear coefficients is considered. The generalized statement of the problem is formulated. The solvability of the problem is proved in a certain class of functional spaces. The data assimilation problem for this model is analysed. The numerical results are presented.

Existence of classical solutions for parabolic functional differential equations with initial boundary conditions of Robin type

Milena Matusik (2012)

Annales Polonici Mathematici

Similarity:

The paper deals with the initial boundary value problem of Robin type for parabolic functional differential equations. The unknown function is the functional variable in the equation and the partial derivatives appear in the classical sense. A theorem on the existence of a classical solution is proved. Our formulation and results cover differential equations with deviated variables and differential integral problems.

Explicit difference schemes for nonlinear differential functional parabolic equations with time dependent coefficients-convergence analysis

A. Poliński (2006)

Annales Polonici Mathematici

Similarity:

We study the initial-value problem for parabolic equations with time dependent coefficients and with nonlinear and nonlocal right-hand sides. Nonlocal terms appear in the unknown function and its gradient. We analyze convergence of explicit finite difference schemes by means of discrete fundamental solutions.

Comparison of explicit and implicit difference schemes for parabolic functional differential equations

Zdzisław Kamont, Karolina Kropielnicka (2012)

Annales Polonici Mathematici

Similarity:

Initial-boundary value problems of Dirichlet type for parabolic functional differential equations are considered. Explicit difference schemes of Euler type and implicit difference methods are investigated. The following theoretical aspects of the methods are presented. Sufficient conditions for the convergence of approximate solutions are given and comparisons of the methods are presented. It is proved that the assumptions on the regularity of the given functions are the same for both...