Displaying similar documents to “Dynamic time parametrization of manipulator trajectories”

The problems of collision avoidance at sea in the formulation of complex motion principles

Bogdan Żak (2004)

International Journal of Applied Mathematics and Computer Science

Similarity:

The paper presents a mathematical model of a collision situation for objects afloat based on the rules of a multiple complex motion. It also contains an analysis of the presented model and draws some conclusions from it. The method used to determine the minimum-time control of ships in a situation of colliding with other objects afloat is presented for a mathematical model of a collision situation. It also includes the results of a simulation study conducted by means of this method....

Supporting locomotive functions of a six-legged walking robot

Krzysztof Walas, Dominik Belter (2011)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper presents a method for building a foothold selection module as well as methods for the stability check for a multi-legged walking robot. The foothold selection decision maker is shaped automatically, without expert knowledge. The robot learns how to select appropriate footholds by walking on rough terrain or by testing ground primitives. The gathered knowledge is then used to find a relation between slippages and the obtained local shape of the terrain, which is further employed...

Motion planning and feedback control for a unicycle in a way point following task: The VFO approach

Maciej Michałek, Krzysztof Kozłowski (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper is devoted to the way point following motion task of a unicycle where the motion planning and the closed-loop motion realization stage are considered. The way point following task is determined by the user-defined sequence of waypoints which have to be passed by the unicycle with the assumed finite precision. This sequence will take the vehicle from the initial state to the target state in finite time. The motion planning strategy proposed in the paper does not involve any...

Trajectory tracking for a mobile robot with skid-slip compensation in the Vector-Field-Orientation control system

Maciej Michałek, Piotr Dutkiewicz, Marcin Kiełczewski, Dariusz Pazderski (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

The article is devoted to a motion control problem for a differentially driven mobile robot in the task of trajectory tracking in the presence of skid-slip effects. The kinematic control concept presented in the paper is the Vector Field Orientation (VFO) feedback approach with a nonlinear feed-forward skid-slip influence compensation scheme. The VFO control law guarantees asymptotic convergence of the position tracking error to zero in spite of the disturbing influence of skid-slip...