Differentiability and analycity of topological entropy for Anosov and geodesic flows.
A. Katok, M. Pollicott, G. Knieper (1989)
Inventiones mathematicae
Similarity:
A. Katok, M. Pollicott, G. Knieper (1989)
Inventiones mathematicae
Similarity:
Yunhua Zhou (2013)
Czechoslovak Mathematical Journal
Similarity:
Schweizer and Smítal introduced the distributional chaos for continuous maps of the interval in B. Schweizer, J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Amer. Math. Soc. 344 (1994), 737–854. In this paper, we discuss the distributional chaos DC1–DC3 for flows on compact metric spaces. We prove that both the distributional chaos DC1 and DC2 of a flow are equivalent to the time-1 maps and so some properties of DC1 and DC2 for...
Günther Palm (1975)
Publications mathématiques et informatique de Rennes
Similarity:
Yang, Xiao-Song (2005)
Discrete Dynamics in Nature and Society
Similarity:
Mark Pollicott (1991-1992)
Séminaire de théorie spectrale et géométrie
Similarity:
Magda Komorníková, Jozef Komorník (1983)
Mathematica Slovaca
Similarity:
Yang, Xiao-Song, Bai, Xiaoming (2006)
Discrete Dynamics in Nature and Society
Similarity:
François Blanchard, Jan Kwiatkowski (1998)
Studia Mathematica
Similarity:
An effective construction of positive-entropy almost one-to-one topological extensions of the Chacón flow is given. These extensions have the property of almost minimal power joinings. For each possible value of entropy there are uncountably many pairwise non-conjugate such extensions.
Gonzalo Contreras (1992)
Mathematische Zeitschrift
Similarity:
Michał Misiurewicz (1976)
Studia Mathematica
Similarity: