Minimal self-joinings and positive topological entropy II
François Blanchard; Jan Kwiatkowski
Studia Mathematica (1998)
- Volume: 128, Issue: 2, page 121-133
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBlanchard, François, and Kwiatkowski, Jan. "Minimal self-joinings and positive topological entropy II." Studia Mathematica 128.2 (1998): 121-133. <http://eudml.org/doc/216478>.
@article{Blanchard1998,
abstract = {An effective construction of positive-entropy almost one-to-one topological extensions of the Chacón flow is given. These extensions have the property of almost minimal power joinings. For each possible value of entropy there are uncountably many pairwise non-conjugate such extensions.},
author = {Blanchard, François, Kwiatkowski, Jan},
journal = {Studia Mathematica},
keywords = {topological coalescence; self-joinings; topological entropy; positive-entropy almost one-to-one extensions; Chacon flow},
language = {eng},
number = {2},
pages = {121-133},
title = {Minimal self-joinings and positive topological entropy II},
url = {http://eudml.org/doc/216478},
volume = {128},
year = {1998},
}
TY - JOUR
AU - Blanchard, François
AU - Kwiatkowski, Jan
TI - Minimal self-joinings and positive topological entropy II
JO - Studia Mathematica
PY - 1998
VL - 128
IS - 2
SP - 121
EP - 133
AB - An effective construction of positive-entropy almost one-to-one topological extensions of the Chacón flow is given. These extensions have the property of almost minimal power joinings. For each possible value of entropy there are uncountably many pairwise non-conjugate such extensions.
LA - eng
KW - topological coalescence; self-joinings; topological entropy; positive-entropy almost one-to-one extensions; Chacon flow
UR - http://eudml.org/doc/216478
ER -
References
top- [BIGlKw] F. Blanchard, E. Glasner and J. Kwiatkowski, Minimal self-joinings and positive topological entropy, Monatsh. Math. 120 (1995), 205-222. Zbl0859.54027
- [BuKw] W. Bułatek and J. Kwiatkowski, Strictly ergodic Toeplitz flows with positive entropy, Studia Math. 103 (1992), 133-142. Zbl0816.58028
- [Cha] R. V. Chacón, A geometric construction of measure preserving transformations, in: Proc. Fifth Berkeley Sympos. Math. Statist. and Probab., Vol. II, Part 2, Univ. of California Press, 1965, 335-360.
- [DeGrSi] M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, Berlin, 1975. Zbl0328.28008
- [Gri] C. Grillenberger, Constructions of strictly ergodic systems: I. Given entropy, Z. Wahrsch. Verw. Gebiete 25 (1973), 323-334. Zbl0253.28004
- [delJ] A. del Junco, On minimal self-joinings in topological dynamics, Ergodic Theory Dynam. Systems 7 (1987), 211-227. Zbl0635.54020
- [delJKe] A. del Junco and M. Keane, On generic points in the Cartesian square of Chacón's transformation, ibid. 5 (1985), 59-69. Zbl0575.28010
- [delJRaSw] A. del Junco, A. M. Rahe and L. Swanson, Chacón's automorphism has minimal self-joinings, J. Analyse Math. 37 (1980), 276-284. Zbl0445.28014
- [King] J. King, A map with topological minimal self-joinings in the sense of del Junco, Ergodic Theory Dynam. Systems 10 (1990), 745-761. Zbl0726.28014
- [Mar] N. Markley, Topological minimal self-joinings, ibid. 3 (1983), 579-599. Zbl0562.54057
- [New] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. (2) 19 (1979), 129-136. Zbl0425.28012
- [Rud] D. J. Rudolph, An example of a measure preserving map with minimal self-joinings, and applications, J. Analyse Math. 35 (1979), 97-122. Zbl0446.28018
- [Wal] P. Walters, Affine transformations and coalescence, Math. Systems Theory 8 (1974), 33-44. Zbl0299.22008
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.