Displaying similar documents to “Lempert theorem for strongly linearly convex domains”

Convexity, C-convexity and Pseudoconvexity Изпъкналост, c-изпъкналост и псевдоизпъкналост

Nikolov, Nikolai (2011)

Union of Bulgarian Mathematicians

Similarity:

Николай М. Николов - Разгледани са характеризации на различни понятия за изпъкналост, като тези понятия са сравнени. We discuss different characterizations of various notions of convexity as well as we compare these notions. *2000 Mathematics Subject Classification: 32F17.

A note on Costara's paper

Armen Edigarian (2004)

Annales Polonici Mathematici

Similarity:

We show that the symmetrized bidisc 𝔾₂ = {(λ₁+λ₂,λ₁λ₂):|λ₁|,|λ₂| < 1} ⊂ ℂ² cannot be exhausted by domains biholomorphic to convex domains.

Remarks on strongly Wright-convex functions

Nelson Merentes, Kazimierz Nikodem, Sergio Rivas (2011)

Annales Polonici Mathematici

Similarity:

Some properties of strongly Wright-convex functions are presented. In particular it is shown that a function f:D → ℝ, where D is an open convex subset of an inner product space X, is strongly Wright-convex with modulus c if and only if it can be represented in the form f(x) = g(x)+a(x)+c||x||², x ∈ D, where g:D → ℝ is a convex function and a:X → ℝ is an additive function. A characterization of inner product spaces by strongly Wright-convex functions is also given.