Reinhardt domains and the Gleason problem

Oscar Lemmers; Jan Wiegerinck

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)

  • Volume: 30, Issue: 2, page 405-414
  • ISSN: 0391-173X

How to cite

top

Lemmers, Oscar, and Wiegerinck, Jan. "Reinhardt domains and the Gleason problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.2 (2001): 405-414. <http://eudml.org/doc/84446>.

@article{Lemmers2001,
author = {Lemmers, Oscar, Wiegerinck, Jan},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Gleason property; maximal ideal; Reinhardt domain},
language = {eng},
number = {2},
pages = {405-414},
publisher = {Scuola normale superiore},
title = {Reinhardt domains and the Gleason problem},
url = {http://eudml.org/doc/84446},
volume = {30},
year = {2001},
}

TY - JOUR
AU - Lemmers, Oscar
AU - Wiegerinck, Jan
TI - Reinhardt domains and the Gleason problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 2
SP - 405
EP - 414
LA - eng
KW - Gleason property; maximal ideal; Reinhardt domain
UR - http://eudml.org/doc/84446
ER -

References

top
  1. [1] U. Backlund - A. Fällström, On Gleason's problem for H∞, Research Report no. 6 (1992), Department of Mathematics, University of Umeå, Sweden. 
  2. [2] U. Backlund - A. Fällström, The Gleason problem for A(Ω), New Zealand J. Math.24 (1995), 17-22. Zbl0847.32014
  3. [3] U. Backlund - A. Fällström, Counterexamples to the Gleason problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 595-603. Zbl0933.32002MR1635710
  4. [4] U. Backlund - A. Fällström, The Gleason property for Reinhardt Domains, Math. Ann.308 (1997), 85-91. Zbl0869.32001MR1446201
  5. [5] F. BeatrousJr., Hölder estimates for the ∂-equation with a support condition, Pacific J. Math.90 (1980), 249-257. Zbl0453.32006
  6. [6] J.E. Fornæss - N. Øvrelid, Finitely generated ideals in A(Ω), Ann. Inst. Fourier(Grenoble) 33 (1983), 77-85. Zbl0489.32013
  7. [7] A.M. Gleason, Finitely generated ideals in Banach algebras, J. Math. Mech.13 (1964), 125-132. Zbl0117.34105MR159241
  8. [8] M. Grangé, Diviseurs de Leibenson et problème de Gleason pour H∞(Ω) dans le cas convexe, Bull. Soc. Math. France114 (1986), 224-245. Zbl0603.32012
  9. [9] A. Griewank - P.J. Rabier, On the smoothness of convex envelopes, Trans. Amer. Math. Soc.322 (1990), 691-709. Zbl0712.49010MR986024
  10. [10] G.M. Khenkin, Approksimatsiya funktsij ν psevdovypuklych oblastyach i teorema Z. L. Leibenzona, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.19 (1971), 37-42. (Russian). 
  11. [11] S.G. Krantz, "Function Theory of Several Complex Variables", John Wiley, New York, 1982. Zbl0471.32008MR635928
  12. [12] A. Noell, The Gleason problem for domains of finite type, Complex Variables Theory Appl. 4 (1985), 233-241. Zbl0535.32009MR801640
  13. [13] N. Øvrelid, Integral representation formulas and L P estimates for the ∂-equation, Math. Scand.29 (1971), 137-160. Zbl0227.35069
  14. [14] N Øvrelid, Generators of the maximal ideals of A(D), Pacific J. Math.39 (1971), 219-223. Zbl0231.46090MR310292

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.