Displaying similar documents to “Fite and Kamenev type oscillation criteria for second order elliptic equations”

Some new oscillation criteria for second order elliptic equations with damping

Rong-Kun Zhuang, Zheng-an Yao (2005)

Annales Polonici Mathematici

Similarity:

Some new oscillation criteria are obtained for second order elliptic differential equations with damping i , j = 1 n D i [ A i j ( x ) D j y ] + i = 1 n b i ( x ) D i y + q ( x ) f ( y ) = 0 , x ∈ Ω, where Ω is an exterior domain in ℝⁿ. These criteria are different from most known ones in the sense that they are based on the information only on a sequence of subdomains of Ω ⊂ ℝⁿ, rather than on the whole exterior domain Ω. Our results are more natural in view of the Sturm Separation Theorem.

Averaging techniques and oscillation of quasilinear elliptic equations

Zhi-Ting Xu, Bao-Guo Jia, Shao-Yuan Xu (2004)

Annales Polonici Mathematici

Similarity:

By using averaging techniques, some oscillation criteria for quasilinear elliptic differential equations of second order i , j = 1 N D i [ A i j ( x ) | D y | p - 2 D j y ] + p ( x ) f ( y ) = 0 are obtained. These results extend and generalize the criteria for linear differential equations due to Kamenev, Philos and Wong.

Bounded oscillation of nonlinear neutral differential equations of arbitrary order

Yeter Ş. Yilmaz, Ağacik Zafer (2001)

Czechoslovak Mathematical Journal

Similarity:

The paper is concerned with oscillation properties of n -th order neutral differential equations of the form [ x ( t ) + c x ( τ ( t ) ) ] ( n ) + q ( t ) f x ( σ ( t ) ) = 0 , t t 0 > 0 , where c is a real number with | c | 1 , q C ( [ t 0 , ) , ) , f C ( , ) , τ , σ C ( [ t 0 , ) , + ) with τ ( t ) < t and lim t τ ( t ) = lim t σ ( t ) = . Sufficient conditions are established for the existence of positive solutions and for oscillation of bounded solutions of the above equation. Combination of these conditions provides necessary and sufficient conditions for oscillation of bounded solutions of the equation. Furthermore, the results are generalized to equations...

On oscillatory nonlinear fourth-order difference equations with delays

Arun K. Tripathy (2018)

Mathematica Bohemica

Similarity:

In this work, oscillatory behaviour of solutions of a class of fourth-order neutral functional difference equations of the form Δ 2 ( r ( n ) Δ 2 ( y ( n ) + p ( n ) y ( n - m ) ) ) + q ( n ) G ( y ( n - k ) ) = 0 is studied under the assumption n = 0 n r ( n ) < . New oscillation criteria have been established which generalize some of the existing results in the literature.

On the oscillation of solutions of third order linear difference equations of neutral type

Anna Andruch-Sobiło, Małgorzata Migda (2005)

Mathematica Bohemica

Similarity:

In this note we consider the third order linear difference equations of neutral type Δ 3 [ x ( n ) - p ( n ) x ( σ ( n ) ) ] + δ q ( n ) x ( τ ( n ) ) = 0 , n N ( n 0 ) , ( E ) where δ = ± 1 , p , q N ( n 0 ) + ; σ , τ N ( n 0 ) , lim n σ ( n ) = lim n τ ( n ) = . We examine the following two cases: { 0 < p ( n ) 1 , σ ( n ) = n + k , τ ( n ) = n + l } , { p ( n ) > 1 , σ ( n ) = n - k , τ ( n ) = n - l } , where k , l are positive integers and we obtain sufficient conditions under which all solutions of the above equations are oscillatory.

Positive coefficients case and oscillation

Ján Ohriska (1998)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We consider the second order self-adjoint differential equation (1) (r(t)y’(t))’ + p(t)y(t) = 0 on an interval I, where r, p are continuous functions and r is positive on I. The aim of this paper is to show one possibility to write equation (1) in the same form but with positive coefficients, say r₁, p₁ and to derive a sufficient condition for equation (1) to be oscillatory in the case p is nonnegative and [ 1 / r ( t ) ] d t converges.

On the oscillation of forced second order mixed-nonlinear elliptic equations

Zhiting Xu (2010)

Annales Polonici Mathematici

Similarity:

Oscillation theorems are established for forced second order mixed-nonlinear elliptic differential equations ⎧ d i v ( A ( x ) | | y | | p - 1 y ) + b ( x ) , | | y | | p - 1 y + C ( x , y ) = e ( x ) , ⎨ ⎩ C ( x , y ) = c ( x ) | y | p - 1 y + i = 1 m c i ( x ) | y | p i - 1 y under quite general conditions. These results are extensions of the recent results of Sun and Wong, [J. Math. Anal. Appl. 334 (2007)] and Zheng, Wang and Han [Appl. Math. Lett. 22 (2009)] for forced second order ordinary differential equations with mixed nonlinearities, and include some known oscillation results in the literature

Oscillations of certain functional differential equations

Said R. Grace (1999)

Czechoslovak Mathematical Journal

Similarity:

Sufficient conditions are presented for all bounded solutions of the linear system of delay differential equations ( - 1 ) m + 1 d m y i ( t ) d t m + j = 1 n q i j y j ( t - h j j ) = 0 , m 1 , i = 1 , 2 , ... , n , to be oscillatory, where q i j ε ( - , ) , h j j ( 0 , ) , i , j = 1 , 2 , ... , n . Also, we study the oscillatory behavior of all bounded solutions of the linear system of neutral differential equations ( - 1 ) m + 1 d m d t m ( y i ( t ) + c y i ( t - g ) ) + j = 1 n q i j y j ( t - h ) = 0 , where c , g and h are real constants and i = 1 , 2 , ... , n .

An embedding relation for bounded mean oscillation on rectangles

Benoît F. Sehba (2014)

Annales Polonici Mathematici

Similarity:

In the two-parameter setting, we say a function belongs to the mean little BMO if its mean over any interval and with respect to any of the two variables has uniformly bounded mean oscillation. This space has been recently introduced by S. Pott and the present author in relation to the multiplier algebra of the product BMO of Chang-Fefferman. We prove that the Cotlar-Sadosky space b m o ( N ) of functions of bounded mean oscillation is a strict subspace of the mean little BMO.

Oscillation criteria for a class of nonlinear differential equations of third order

N. Parhi, P. Das (1992)

Annales Polonici Mathematici

Similarity:

Oscillation criteria are obtained for nonlinear homogeneous third order differential equations of the form y ' ' ' + q ( t ) y ' + p ( t ) y α = 0 and y”’ + q(t)y’ + p(t)f(y) = 0, where p and q are real-valued continuous functions on [a,∞), f is a real-valued continuous function on (-∞, ∞) and α > 0 is a quotient of odd integers. Sign restrictions are imposed on p(t) and q(t). These results generalize some of the results obtained earlier in this direction.