Displaying similar documents to “Some new oscillation criteria for second order elliptic equations with damping”

Averaging techniques and oscillation of quasilinear elliptic equations

Zhi-Ting Xu, Bao-Guo Jia, Shao-Yuan Xu (2004)

Annales Polonici Mathematici

Similarity:

By using averaging techniques, some oscillation criteria for quasilinear elliptic differential equations of second order i , j = 1 N D i [ A i j ( x ) | D y | p - 2 D j y ] + p ( x ) f ( y ) = 0 are obtained. These results extend and generalize the criteria for linear differential equations due to Kamenev, Philos and Wong.

Fite and Kamenev type oscillation criteria for second order elliptic equations

Zhiting Xu (2007)

Annales Polonici Mathematici

Similarity:

Fite and Kamenev type oscillation criteria for the second order nonlinear damped elliptic differential equation i , j = 1 N D i [ a i j ( x ) D j y ] + i = 1 N b i ( x ) D i y + p ( x ) f ( y ) = 0 are obtained. Our results are extensions of those for ordinary differential equations and improve some known oscillation criteria in the literature. Several examples are given to show the significance of the results.

On the oscillation of forced second order mixed-nonlinear elliptic equations

Zhiting Xu (2010)

Annales Polonici Mathematici

Similarity:

Oscillation theorems are established for forced second order mixed-nonlinear elliptic differential equations ⎧ d i v ( A ( x ) | | y | | p - 1 y ) + b ( x ) , | | y | | p - 1 y + C ( x , y ) = e ( x ) , ⎨ ⎩ C ( x , y ) = c ( x ) | y | p - 1 y + i = 1 m c i ( x ) | y | p i - 1 y under quite general conditions. These results are extensions of the recent results of Sun and Wong, [J. Math. Anal. Appl. 334 (2007)] and Zheng, Wang and Han [Appl. Math. Lett. 22 (2009)] for forced second order ordinary differential equations with mixed nonlinearities, and include some known oscillation results in the literature

Positive coefficients case and oscillation

Ján Ohriska (1998)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We consider the second order self-adjoint differential equation (1) (r(t)y’(t))’ + p(t)y(t) = 0 on an interval I, where r, p are continuous functions and r is positive on I. The aim of this paper is to show one possibility to write equation (1) in the same form but with positive coefficients, say r₁, p₁ and to derive a sufficient condition for equation (1) to be oscillatory in the case p is nonnegative and [ 1 / r ( t ) ] d t converges.

Bounded oscillation of nonlinear neutral differential equations of arbitrary order

Yeter Ş. Yilmaz, Ağacik Zafer (2001)

Czechoslovak Mathematical Journal

Similarity:

The paper is concerned with oscillation properties of n -th order neutral differential equations of the form [ x ( t ) + c x ( τ ( t ) ) ] ( n ) + q ( t ) f x ( σ ( t ) ) = 0 , t t 0 > 0 , where c is a real number with | c | 1 , q C ( [ t 0 , ) , ) , f C ( , ) , τ , σ C ( [ t 0 , ) , + ) with τ ( t ) < t and lim t τ ( t ) = lim t σ ( t ) = . Sufficient conditions are established for the existence of positive solutions and for oscillation of bounded solutions of the above equation. Combination of these conditions provides necessary and sufficient conditions for oscillation of bounded solutions of the equation. Furthermore, the results are generalized to equations...

Oscillation of second-order quasilinear retarded difference equations via canonical transform

George E. Chatzarakis, Deepalakshmi Rajasekar, Saravanan Sivagandhi, Ethiraju Thandapani (2024)

Mathematica Bohemica

Similarity:

We study the oscillatory behavior of the second-order quasi-linear retarded difference equation Δ ( p ( n ) ( Δ y ( n ) ) α ) + η ( n ) y β ( n - k ) = 0 under the condition n = n 0 p - 1 α ( n ) < (i.e., the noncanonical form). Unlike most existing results, the oscillatory behavior of this equation is attained by transforming it into an equation in the canonical form. Examples are provided to show the importance of our main results.

A note on the oscillation problems for differential equations with p ( t ) -Laplacian

Kōdai Fujimoto (2023)

Archivum Mathematicum

Similarity:

This paper deals with the oscillation problems on the nonlinear differential equation ( a ( t ) | x ' | p ( t ) - 2 x ' ) ' + b ( t ) | x | λ - 2 x = 0 involving p ( t ) -Laplacian. Sufficient conditions are given under which all proper solutions are oscillatory. In addition, we give a-priori estimates for nonoscillatory solutions and propose an open problem.

Forced oscillation of third order nonlinear dynamic equations on time scales

Baoguo Jia (2010)

Annales Polonici Mathematici

Similarity:

Consider the third order nonlinear dynamic equation x Δ Δ Δ ( t ) + p ( t ) f ( x ) = g ( t ) , (*) on a time scale which is unbounded above. The function f ∈ C(,) is assumed to satisfy xf(x) > 0 for x ≠ 0 and be nondecreasing. We study the oscillatory behaviour of solutions of (*). As an application, we find that the nonlinear difference equation Δ ³ x ( n ) + n α | x | γ s g n ( n ) = ( - 1 ) n c , where α ≥ -1, γ > 0, c > 3, is oscillatory.

Oscillation in deviating differential equations using an iterative method

George E. Chatzarakis, Irena Jadlovská (2019)

Communications in Mathematics

Similarity:

Sufficient oscillation conditions involving lim sup and lim inf for first-order differential equations with non-monotone deviating arguments and nonnegative coefficients are obtained. The results are based on the iterative application of the Grönwall inequality. Examples, numerically solved in MATLAB, are also given to illustrate the applicability and strength of the obtained conditions over known ones.

Oscillations of certain functional differential equations

Said R. Grace (1999)

Czechoslovak Mathematical Journal

Similarity:

Sufficient conditions are presented for all bounded solutions of the linear system of delay differential equations ( - 1 ) m + 1 d m y i ( t ) d t m + j = 1 n q i j y j ( t - h j j ) = 0 , m 1 , i = 1 , 2 , ... , n , to be oscillatory, where q i j ε ( - , ) , h j j ( 0 , ) , i , j = 1 , 2 , ... , n . Also, we study the oscillatory behavior of all bounded solutions of the linear system of neutral differential equations ( - 1 ) m + 1 d m d t m ( y i ( t ) + c y i ( t - g ) ) + j = 1 n q i j y j ( t - h ) = 0 , where c , g and h are real constants and i = 1 , 2 , ... , n .

Points with maximal Birkhoff average oscillation

Jinjun Li, Min Wu (2016)

Czechoslovak Mathematical Journal

Similarity:

Let f : X X be a continuous map with the specification property on a compact metric space X . We introduce the notion of the maximal Birkhoff average oscillation, which is the “worst” divergence point for Birkhoff average. By constructing a kind of dynamical Moran subset, we prove that the set of points having maximal Birkhoff average oscillation is residual if it is not empty. As applications, we present the corresponding results for the Birkhoff averages for continuous functions on a repeller...

On oscillation of solutions of forced nonlinear neutral differential equations of higher order II

N. Parhi, R. N. Rath (2003)

Annales Polonici Mathematici

Similarity:

Sufficient conditions are obtained so that every solution of [ y ( t ) - p ( t ) y ( t - τ ) ] ( n ) + Q ( t ) G ( y ( t - σ ) ) = f ( t ) where n ≥ 2, p,f ∈ C([0,∞),ℝ), Q ∈ C([0,∞),[0,∞)), G ∈ C(ℝ,ℝ), τ > 0 and σ ≥ 0, oscillates or tends to zero as t . Various ranges of p(t) are considered. In order to accommodate sublinear cases, it is assumed that 0 Q ( t ) d t = . Through examples it is shown that if the condition on Q is weakened, then there are sublinear equations whose solutions tend to ±∞ as t → ∞.