The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A result on the comparison principle for the log canonical threshold of plurisubharmonic functions”

A decomposition of complex Monge-Ampère measures

Yang Xing (2007)

Annales Polonici Mathematici

Similarity:

We prove a decomposition theorem for complex Monge-Ampère measures of plurisubharmonic functions in connection with their pluripolar sets.

Monge-Ampère boundary measures

Urban Cegrell, Berit Kemppe (2009)

Annales Polonici Mathematici

Similarity:

We study swept-out Monge-Ampère measures of plurisubharmonic functions and boundary values related to those measures.

Matrix inequalities and the complex Monge-Ampère operator

Jonas Wiklund (2004)

Annales Polonici Mathematici

Similarity:

We study two known theorems regarding Hermitian matrices: Bellman's principle and Hadamard's theorem. Then we apply them to problems for the complex Monge-Ampère operator. We use Bellman's principle and the theory for plurisubharmonic functions of finite energy to prove a version of subadditivity for the complex Monge-Ampère operator. Then we show how Hadamard's theorem can be extended to polyradial plurisubharmonic functions.

Subextension of plurisubharmonic functions without changing the Monge-Ampère measures and applications

Le Mau Hai, Nguyen Xuan Hong (2014)

Annales Polonici Mathematici

Similarity:

The aim of the paper is to investigate subextensions with boundary values of certain plurisubharmonic functions without changing the Monge-Ampère measures. From the results obtained, we deduce that if a given sequence is convergent in C n - 1 -capacity then the sequence of the Monge-Ampère measures of subextensions is weakly*-convergent. As an application, we investigate the Dirichlet problem for a nonnegative measure μ in the class ℱ(Ω,g) without the assumption that μ vanishes on all pluripolar...

The general definition of the complex Monge-Ampère operator

Urban Cegrell (2004)

Annales de l’institut Fourier

Similarity:

We define and study the domain of definition for the complex Monge-Ampère operator. This domain is the most general if we require the operator to be continuous under decreasing limits. The domain is given in terms of approximation by certain " test"-plurisubharmonic functions. We prove estimates, study of decomposition theorem for positive measures and solve a Dirichlet problem.

The complex Monge-Ampère operator in the Cegrell classes

Rafał Czyż

Similarity:

The complex Monge-Ampère operator is a useful tool not only within pluripotential theory, but also in algebraic geometry, dynamical systems and Kähler geometry. In this self-contained survey we present a unified theory of Cegrell's framework for the complex Monge-Ampère operator.