Displaying similar documents to “Quasilinearization methods for nonlinear differential-functional parabolic equations: unbounded case”

Monotone iteration for infinite systems of parabolic equations with functional dependence

Anna Pudełko (2007)

Annales Polonici Mathematici

Similarity:

We consider the initial value problem for an infinite system of differential-functional equations of parabolic type. General operators of parabolic type of second order with variable coefficients are considered and the system is weakly coupled. The solutions are obtained by the monotone iterative method. We prove theorems on weak partial differential-functional inequalities as well the existence and uniqueness theorems in the class of continuous bounded functions and in the class of...

Existence of solutions for infinite systems of parabolic equations with functional dependence

Anna Pudełko (2005)

Annales Polonici Mathematici

Similarity:

The Cauchy problem for an infinite system of parabolic type equations is studied. General operators of parabolic type of second order with variable coefficients are considered and the system is weakly coupled. We prove the existence and uniqueness of a bounded solution under Carathéodory type conditions and its differentiability, as well as the existence and uniqueness in the class of functions satisfying a natural growth condition. Both results are obtained by the fixed point method. ...

Existence and uniqueness of solutions of nonlinear infinite systems of parabolic differential-functional equations

Stanisław Brzychczy (2001)

Annales Polonici Mathematici

Similarity:

We consider the Fourier first initial-boundary value problem for an infinite system of weakly coupled nonlinear differential-functional equations of parabolic type. The right-hand sides of the system are functionals of unknown functions. The existence and uniqueness of the solution are proved by the Banach fixed point theorem.

Iterative methods for parabolic functional differential equations

Milena Matusik (2013)

Applicationes Mathematicae

Similarity:

This paper is concerned with iterative methods for parabolic functional differential equations with initial boundary conditions. Monotone iterative methods are discussed. We prove a theorem on the existence of solutions for a parabolic problem whose right-hand side admits a Jordan type decomposition with respect to the function variable. It is shown that there exist Newton sequences which converge to the solution of the initial problem. Differential equations with deviated variables...

Existence of explosive solutions to some nonlinear parabolic Itô equations

Pao-Liu Chow (2015)

Banach Center Publications

Similarity:

The paper is concerned with the problem of existence of explosive solutions for a class of nonlinear parabolic Itô equations. Under some sufficient conditions on the initial state and the coefficients, it is proven by the method of auxiliary functionals that there exist explosive solutions with positive probability. The main results are presented in Theorems 3.1 and 3.2 under different sets of conditions. An example is given to illustrate some application of the second theorem. ...

Existence of classical solutions for parabolic functional differential equations with initial boundary conditions of Robin type

Milena Matusik (2012)

Annales Polonici Mathematici

Similarity:

The paper deals with the initial boundary value problem of Robin type for parabolic functional differential equations. The unknown function is the functional variable in the equation and the partial derivatives appear in the classical sense. A theorem on the existence of a classical solution is proved. Our formulation and results cover differential equations with deviated variables and differential integral problems.

Convergent semidiscretization of a nonlinear fourth order parabolic system

Ansgar Jüngel, René Pinnau (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.

Explicit difference schemes for nonlinear differential functional parabolic equations with time dependent coefficients-convergence analysis

A. Poliński (2006)

Annales Polonici Mathematici

Similarity:

We study the initial-value problem for parabolic equations with time dependent coefficients and with nonlinear and nonlocal right-hand sides. Nonlocal terms appear in the unknown function and its gradient. We analyze convergence of explicit finite difference schemes by means of discrete fundamental solutions.

Implicit difference methods for quasilinear parabolic functional differential problems of the Dirichlet type

K. Kropielnicka (2008)

Applicationes Mathematicae

Similarity:

Classical solutions of quasilinear functional differential equations are approximated with solutions of implicit difference schemes. Proofs of convergence of the difference methods are based on a comparison technique. Nonlinear estimates of the Perron type with respect to the functional variable for given functions are used. Numerical examples are given.