Convergent semidiscretization of a nonlinear fourth order parabolic system
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 37, Issue: 2, page 277-289
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- R.A. Adams, Sobolev Spaces. First edition, Academic Press, New York (1975).
- M.G. Ancona, Diffusion-drift modelling of strong inversion layers. COMPEL6 (1987) 11-18.
- J. Barrett, J. Blowey and H. Garcke, Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numer. Math.80 (1998) 525-556.
- N. Ben Abdallah and A. Unterreiter, On the stationary quantum drift diffusion model. Z. Angew. Math. Phys.49 (1998) 251-275.
- F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations. J. Differential Equations83 (1990) 179-206.
- A.L. Bertozzi, The mathematics of moving contact lines in thin liquid films. Notices Amer. Math. Soc.45 (1998) 689-697.
- A.L. Bertozzi and M.C. Pugh, Long-wave instabilities and saturation in thin film equations. Comm. Pure Appl. Math.51 (1998) 625-661.
- A.L. Bertozzi and L. Zhornitskaya, Positivity preserving numerical schemes for lubriaction-typeequations. SIAM J. Numer. Anal.37 (2000) 523-555.
- P.M. Bleher, J.L. Lebowitz and E.R. Speer, Existence and positivity of solutions of a fourth-order nonlinear PDE describing interface fluctuations. Comm. Pure Appl. Math.47 (1994) 923-942.
- W.M. Coughran and J.W. Jerome, Modular alorithms for transient semiconductor device simulation, part I: Analysis of the outer iteration, in Computational Aspects of VLSI Design with an Emphasis on Semiconductor Device Simulations, R.E. Bank Ed. (1990) 107-149.
- R. Dal Passo, H. Garcke and G. Grün, On a fourth-order degenerate parabolic equation: Global entropy estimates, existence and quantitative behavior of solutions. SIAM J. Math. Anal.29 (1998) 321-342.
- C.L. Gardner, The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math.54 (1994) 409-427.
- C.L. Gardner and Ch. Ringhofer, Approximation of thermal equilibrium for quantum gases with discontinuous potentials and applications to semiconductor devices. SIAM J. Appl. Math.58 (1998) 780-805.
- I. Gasser and A. Jüngel, The quantum hydrodynamic model for semiconductors in thermal equilibrium. Z. Angew. Math. Phys.48 (1997) 45-59.
- I. Gasser and P.A. Markowich, Quantum hydrodynamics, Wigner transform and the classical limit. Asymptot. Anal.14 (1997) 97-116.
- G. Grün and M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation. Numer. Math.87 (2000) 113-152.
- M.T. Gyi and A. Jüngel, A quantum regularization of the one-dimensional hydrodynamic model for semiconductors. Adv. Differential Equations5 (2000) 773-800.
- A. Jüngel, Quasi-hydrodynamic Semiconductor Equations. Birkhäuser, PNLDE 41 (2001).
- A. Jüngel and R. Pinnau, Global non-negative solutions of a nonlinear fourth order parabolic equation for quantum systems. SIAM J. Math. Anal.32 (2000) 760-777.
- A. Jüngel and R. Pinnau, A positivity preserving numerical scheme for a nonlinear fourth-order parabolic system. SIAM J. Numer. Anal.39 (2001) 385-406.
- P.A. Markowich, Ch. A. Ringhofer and Ch. Schmeiser, Semiconductor Equations. First edition, Springer-Verlag, Wien (1990).
- F. Pacard and A. Unterreiter, A variational analysis of the thermal equilibrium state of charged quantum fluids. Comm. Partial Differential Equations20 (1995) 885-900.
- P. Pietra and C. Pohl, Weak limits of the quantum hydrodynamic model. To appear in Proc. International Workshop on Quantum Kinetic Theory.
- R. Pinnau, A note on boundary conditions for quantum hydrodynamic models. Appl. Math. Lett.12 (1999) 77-82.
- R. Pinnau, The linearized transient quantum drift diffusion model - stability of stationary states. ZAMM80 (2000) 327-344.
- R. Pinnau, Numerical study of the Quantum Euler-Poisson model. To appear in Appl. Math. Lett.
- R. Pinnau and A. Unterreiter, The stationary current-voltage characteristics of the quantum drift diffusion model. SIAM J. Numer. Anal.37 (1999) 211-245.
- J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 65-96.
- G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems. First edition, Plenum Press, New York (1987).