Displaying similar documents to “Koebe's general uniformisation theorem for planar Riemann surfaces”

Riemann problem on the double of a multiply connected circular region

V. V. Mityushev (1997)

Annales Polonici Mathematici

Similarity:

The Riemann problem has been solved in [9] for an arbitrary closed Riemann surface in terms of the principal functionals. This paper is devoted to solution of the problem only for the double of a multiply connected region and can be treated as complementary to [9,1]. We obtain a complete solution of the Riemann problem in that particular case. The solution is given in analytic form by a Poincaré series.

On commutativity and ovals for a pair of symmetries of a Riemann surface

Ewa Kozłowska-Walania (2007)

Colloquium Mathematicae

Similarity:

We study the upper bounds for the total number of ovals of two symmetries of a Riemann surface of genus g, whose product has order n. We show that the natural bound coming from Bujalance, Costa, Singerman and Natanzon's original results is attained for arbitrary even n, and in case of n odd, there is a sharper bound, which is attained. We also prove that two (M-q)- and (M-q')-symmetries of a Riemann surface X of genus g commute for g ≥ q+q'+1 (by (M-q)-symmetry we understand a symmetry...

Riemann mapping theorem in ℂⁿ

Krzysztof Jarosz (2012)

Annales Polonici Mathematici

Similarity:

The classical Riemann Mapping Theorem states that a nontrivial simply connected domain Ω in ℂ is holomorphically homeomorphic to the open unit disc 𝔻. We also know that "similar" one-dimensional Riemann surfaces are "almost" holomorphically equivalent. We discuss the same problem concerning "similar" domains in ℂⁿ in an attempt to find a multidimensional quantitative version of the Riemann Mapping Theorem

On ovals on Riemann surfaces.

Grzegorz Gromadzki (2000)

Revista Matemática Iberoamericana

Similarity:

We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.

Automorphisms of Riemann surfaces with two fixed points

Tomasz Szemberg (1991)

Annales Polonici Mathematici

Similarity:

We give an upper bound for the order of an automorphism of a Riemann surface with two fixed points. The main results are presented in Theorems 1.4 and 2.4.

Algebro-geometric approach to the Ernst equation I. Mathematical Preliminaries

O. Richter, C. Klein (1997)

Banach Center Publications

Similarity:

1. Introduction. It is well known that methods of algebraic geometry and, in particular, Riemann surface techniques are well suited for the solution of nonlinear integrable equations. For instance, for nonlinear evolution equations, so called 'finite gap' solutions have been found by the help of these methods. In 1989 Korotkin [9] succeeded in applying these techniques to the Ernst equation, which is equivalent to Einstein's vacuum equation for axisymmetric stationary fields. But, the...

On pq-hyperelliptic Riemann surfaces

Ewa Tyszkowska (2005)

Colloquium Mathematicae

Similarity:

A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if X admits a conformal involution ϱ, called a p-hyperelliptic involution, for which X/ϱ is an orbifold of genus p. If in addition X admits a q-hypereliptic involution then we say that X is pq-hyperelliptic. We give a necessary and sufficient condition on p,q and g for existence of a pq-hyperelliptic Riemann surface of genus g. Moreover we give some conditions under which p- and q-hyperelliptic involutions of...