Displaying similar documents to “Multiplicity of solutions for a singular p-laplacian elliptic equation”

Singular Dirichlet Problems with Quadratic Gradient

Pedro J. Martínez-Aparicio (2009)

Bollettino dell'Unione Matematica Italiana

Similarity:

We study the existence of solution for nonlinear elliptic problems with singular lower order terms that have natural growth with respect to the gradient.

Uniqueness of solutions for some elliptic equations with a quadratic gradient term

David Arcoya, Sergio Segura de León (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study a comparison principle and uniqueness of positive solutions for the homogeneous Dirichlet boundary value problem associated to quasi-linear elliptic equations with lower order terms. A model example is given by - Δ u + λ | u | 2 u r = f ( x ) , λ , r > 0 . The main feature of these equations consists in having a quadratic gradient term in which singularities are allowed. The arguments employed here also work to deal with equations having lack of ellipticity...

Converse problem for the two-component radial Gross-Pitaevskii system with a large coupling parameter

Casteras, Jean-Baptiste, Sourdis, Christos

Similarity:

We consider strongly coupled competitive elliptic systems that arise in the study of two-component Bose-Einstein condensates. As the coupling parameter tends to infinity, solutions that remain uniformly bounded are known to converge to a segregated limiting profile, with the difference of its components satisfying a limit scalar PDE. In the case of radial symmetry, under natural non-degeneracy assumptions on a solution of the limit problem, we establish by a perturbation argument its...

Nonzero and positive solutions of a superlinear elliptic system

Mario Zuluaga Uribe (2001)

Archivum Mathematicum

Similarity:

In this paper we consider the existence of nonzero solutions of an undecoupling elliptic system with zero Dirichlet condition. We use Leray-Schauder Degree Theory and arguments of Measure Theory. We will show the existence of positive solutions and we give applications to biharmonic equations and the scalar case.