Displaying similar documents to “On 'special' fibred coordinates for general and classical connections”

Bundle functors with the point property which admit prolongation of connections

W. M. Mikulski (2010)

Annales Polonici Mathematici

Similarity:

Let F:ℳ f →ℱℳ be a bundle functor with the point property F(pt) = pt, where pt is a one-point manifold. We prove that F is product preserving if and only if for any m and n there is an m , n -canonical construction D of general connections D(Γ) on Fp:FY → FM from general connections Γ on fibred manifolds p:Y → M.

Non-existence of some canonical constructions on connections

Włodzimierz M. Mikulski (2003)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For a vector bundle functor H : f 𝒱 with the point property we prove that H is product preserving if and only if for any m and n there is an m , n -natural operator D transforming connections Γ on ( m , n ) -dimensional fibered manifolds p : Y M into connections D ( Γ ) on H p : H Y H M . For a bundle functor E : m , n with some weak conditions we prove non-existence of m , n -natural operators D transforming connections Γ on ( m , n ) -dimensional fibered manifolds Y M into connections D ( Γ ) on E Y M .

A construction of a connection on G Y Y from a connection on Y M by means of classical linear connections on M and Y

Włodzimierz M. Mikulski (2005)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a bundle functor of order ( r , s , q ) , s r q , on the category m , n of ( m , n ) -dimensional fibered manifolds and local fibered diffeomorphisms. Given a general connection Γ on an m , n -object Y M we construct a general connection 𝒢 ( Γ , λ , Λ ) on G Y Y be means of an auxiliary q -th order linear connection λ on M and an s -th order linear connection Λ on Y . Then we construct a general connection 𝒢 ( Γ , 1 , 2 ) on G Y Y by means of auxiliary classical linear connections 1 on M and 2 on Y . In the case G = J 1 we determine all general connections...

Natural maps depending on reductions of frame bundles

Ivan Kolář (2011)

Annales Polonici Mathematici

Similarity:

We clarify how the natural transformations of fiber product preserving bundle functors on m can be constructed by using reductions of the rth order frame bundle of the base, m being the category of fibered manifolds with m-dimensional bases and fiber preserving maps with local diffeomorphisms as base maps. The iteration of two general r-jet functors is discussed in detail.