Displaying similar documents to “ω-pluripolar sets and subextension of ω-plurisubharmonic functions on compact Kähler manifolds”

3-submersions from QR-hypersurfaces of quaternionic Kähler manifolds

Gabriel Eduard Vîlcu (2010)

Annales Polonici Mathematici

Similarity:

We study 3-submersions from a QR-hypersurface of a quaternionic Kähler manifold onto an almost quaternionic hermitian manifold. We also prove the non-existence of quaternionic submersions between quaternionic Kähler manifolds which are not locally hyper-Kähler.

An extension theorem for Kähler currents with analytic singularities

Tristan C. Collins, Valentino Tosatti (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We prove an extension theorem for Kähler currents with analytic singularities in a Kähler class on a complex submanifold of a compact Kähler manifold.

Toric extremal Kähler-Ricci solitons are Kähler-Einstein

Simone Calamai, David Petrecca (2017)

Complex Manifolds

Similarity:

In this short note, we prove that a Calabi extremal Kähler-Ricci soliton on a compact toric Kähler manifold is Einstein. This settles for the class of toric manifolds a general problem stated by the authors that they solved only under some curvature assumptions.

Strongly not relatives Kähler manifolds

Michela Zedda (2017)

Complex Manifolds

Similarity:

In this paper we study Kähler manifolds that are strongly not relative to any projective Kähler manifold, i.e. those Kähler manifolds that do not share a Kähler submanifold with any projective Kähler manifold even when their metric is rescaled by the multiplication by a positive constant. We prove two results which highlight some relations between this property and the existence of a full Kähler immersion into the infinite dimensional complex projective space. As application we get that...

On compact astheno-Kähler manifolds

Koji Matsuo, Takao Takahashi (2001)

Colloquium Mathematicae

Similarity:

We prove that every compact balanced astheno-Kähler manifold is Kähler, and that there exists an astheno-Kähler structure on the product of certain compact normal almost contact metric manifolds.