Displaying similar documents to “Quantization Dimension Function and Ergodic Measure with Bounded Distortion”

Conformal measures for rational functions revisited

Manfred Denker, R. Mauldin, Z. Nitecki, Mariusz Urbański (1998)

Fundamenta Mathematicae

Similarity:

We show that the set of conical points of a rational function of the Riemann sphere supports at most one conformal measure. We then study the problem of existence of such measures and their ergodic properties by constructing Markov partitions on increasing subsets of sets of conical points and by applying ideas of the thermodynamic formalism.

Ergodic theorem, reversibility and the filling scheme

Yves Derriennic (2010)

Colloquium Mathematicae

Similarity:

The aim of this short note is to present in terse style the meaning and consequences of the "filling scheme" approach for a probability measure preserving transformation. A cohomological equation encapsulates the argument. We complete and simplify Woś' study (1986) of the reversibility of the ergodic limits when integrability is not assumed. We give short and unified proofs of well known results about the behaviour of ergodic averages, like Kesten's lemma (1975). The strikingly simple...

Pointwise ergodic theorems in Lorentz spaces L(p,q) for null preserving transformations

Ryotaro Sato (1995)

Studia Mathematica

Similarity:

Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average n - 1 i = 0 n - 1 f τ i ( x ) converges almost everywhere to a function f* in L ( p 1 , q 1 ] , where (pq) and ( p 1 , q 1 ] are assumed to be in the set ( r , s ) : r = s = 1 , o r 1 < r < a n d 1 s , o r r = s = . Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized...

Genericity of nonsingular transformations with infinite ergodic index

J. Choksi, M. Nadkarni (2000)

Colloquium Mathematicae

Similarity:

It is shown that in the group of invertible measurable nonsingular transformations on a Lebesgue probability space, endowed with the coarse topology, the transformations with infinite ergodic index are generic; they actually form a dense G δ set. (A transformation has infinite ergodic index if all its finite Cartesian powers are ergodic.) This answers a question asked by C. Silva. A similar result was proved by U. Sachdeva in 1971, for the group of transformations preserving an infinite...