Conformal measures for rational functions revisited
Manfred Denker; R. Mauldin; Z. Nitecki; Mariusz Urbański
Fundamenta Mathematicae (1998)
- Volume: 157, Issue: 2-3, page 161-173
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [ADU] J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-548. Zbl0789.28010
- [BMO] A. M. Blokh, J. C. Mayer and L. G. Oversteegen, Limit sets and conformal measures, preprint, 1998.
- [DNU] M. Denker, Z. Nitecki and M. Urbański, Conformal measures and S-unimodal maps, in: Dynamical Systems and Applications, World Sci. Ser. Appl. Anal. 4, World Sci., 1995, 169-212. Zbl0856.58023
- [DU] M. Denker and M. Urbański, Ergodic theory of equilibrium states for rational maps, Nonlinearity 4 (1991), 103-134. Zbl0718.58035
- [DU1] M. Denker and M. Urbański, On Sullivan's conformal measures for rational maps of the Riemann sphere, ibid. 4 (1991), 365-384. Zbl0722.58028
- [DU2] M. Denker and M. Urbański, On absolutely continuous invariant measures for expansive rational maps with rationally indifferent periodic points, Forum Math. 3 (1991), 561-579. Zbl0745.28008
- [DU3] M. Denker and M. Urbański, Geometric measures for parabolic rational maps, Ergodic Theory Dynam. Systems 12 (1992), 53-66. Zbl0737.58030
- [LM] M. Lyubich and Y. Minsky, Laminations in holomorphic dynamics, J. Differential Geom. 47 (1997), 17-94. Zbl0910.58032
- [Ma] R. Ma né, On the Bernoulli property of rational maps, Ergodic Theory Dynam. Systems 5 (1985), 71-88.
- [MU] R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. 73 (1996), 105-154. Zbl0852.28005
- [MM] C. T. McMullen, Hausdorff dimension and conformal dynamics II: Geometrically finite rational maps, preprint, Stony Brook, 1997.
- [Pr1] F. Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119 (1993), 309-317. Zbl0787.58037
- [Pr2] F. Przytycki, Iterations of holomorphic Collet-Eckmann maps: Conformal and invariant measures. Appendix: On non-renormalizable quadratic polynomials, Trans. Amer. Math. Soc. 350 (1998), 717-742. Zbl0892.58063
- [Pr3] F. Przytycki, On measure and Hausdorff dimension of Julia sets for holomorphic Collet-Eckmann maps, in: Dynamical Systems (Montevideo, 1995), Pitman Res. Notes Math. 362, Longman, 1996, 167-181. Zbl0868.58063
- [Pr4] F. Przytycki, Conical limit set and Poincaré exponent for iterations of rational functions, preprint, 1997
- [PU] F. Przytycki and M. Urbański, Fractal sets in the plane - ergodic theory methods, to appear.
- [Sh] M. Shishikura, The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, preprint, 1991.
- [U1] M. Urbański, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems 14 (1994), 391-414. Zbl0807.58025
- [U2] M. Urbański, On some aspects of fractal dimensions in higher dimensional dynamics, preprint, 1995.
- [U3] M. Urbański, Geometry and ergodic theory of conformal nonrecurrent dynamics, Ergodic Theory Dynam. Systems 17 (1997), 1449-1476. Zbl0894.58036