Displaying similar documents to “Group Structures and Rectifiability in Powers of Spaces”

On topological groups with a small base and metrizability

Saak Gabriyelyan, Jerzy Kąkol, Arkady Leiderman (2015)

Fundamenta Mathematicae

Similarity:

A (Hausdorff) topological group is said to have a -base if it admits a base of neighbourhoods of the unit, U α : α , such that U α U β whenever β ≤ α for all α , β . The class of all metrizable topological groups is a proper subclass of the class T G of all topological groups having a -base. We prove that a topological group is metrizable iff it is Fréchet-Urysohn and has a -base. We also show that any precompact set in a topological group G T G is metrizable, and hence G is strictly angelic. We deduce from...

Remainders of metrizable spaces and a generalization of Lindelöf Σ-spaces

A. V. Arhangel'skii (2011)

Fundamenta Mathematicae

Similarity:

We establish some new properties of remainders of metrizable spaces. In particular, we show that if the weight of a metrizable space X does not exceed 2 ω , then any remainder of X in a Hausdorff compactification is a Lindelöf Σ-space. An example of a metrizable space whose remainder in some compactification is not a Lindelöf Σ-space is given. A new class of topological spaces naturally extending the class of Lindelöf Σ-spaces is introduced and studied. This leads to the following theorem:...

Arhangel'skiĭ sheaf amalgamations in topological groups

Boaz Tsaban, Lyubomyr Zdomskyy (2016)

Fundamenta Mathematicae

Similarity:

We consider amalgamation properties of convergent sequences in topological groups and topological vector spaces. The main result of this paper is that, for arbitrary topological groups, Nyikos’s property α 1 . 5 is equivalent to Arhangel’skiĭ’s formally stronger property α₁. This result solves a problem of Shakhmatov (2002), and its proof uses a new perturbation argument. We also prove that there is a topological space X such that the space C p ( X ) of continuous real-valued functions on X with the...

Nonnormality of remainders of some topological groups

Aleksander V. Arhangel'skii, J. van Mill (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is known that every remainder of a topological group is Lindelöf or pseudocompact. Motivated by this result, we study in this paper when a topological group G has a normal remainder. In a previous paper we showed that under mild conditions on G , the Continuum Hypothesis implies that if the Čech-Stone remainder G * of G is normal, then it is Lindelöf. Here we continue this line of investigation, mainly for the case of precompact groups. We show that no pseudocompact group, whose weight...

Cellularity and the index of narrowness in topological groups

Mihail G. Tkachenko (2011)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study relations between the cellularity and index of narrowness in topological groups and their G δ -modifications. We show, in particular, that the inequalities in ( ( H ) τ ) 2 τ · in ( H ) and c ( ( H ) τ ) 2 2 τ · in ( H ) hold for every topological group H and every cardinal τ ω , where ( H ) τ denotes the underlying group H endowed with the G τ -modification of the original topology of H and in ( H ) is the index of narrowness of the group H . Also, we find some bounds for the complexity of continuous real-valued functions f on an arbitrary ω -narrow group...

A solution to Comfort's question on the countable compactness of powers of a topological group

Artur Hideyuki Tomita (2005)

Fundamenta Mathematicae

Similarity:

In 1990, Comfort asked Question 477 in the survey book “Open Problems in Topology”: Is there, for every (not necessarily infinite) cardinal number α 2 , a topological group G such that G γ is countably compact for all cardinals γ < α, but G α is not countably compact? Hart and van Mill showed in 1991 that α = 2 answers this question affirmatively under M A c o u n t a b l e . Recently, Tomita showed that every finite cardinal answers Comfort’s question in the affirmative, also from M A c o u n t a b l e . However, the question has...

On the Hausdorff Dimension of Topological Subspaces

Tomasz Szarek, Maciej Ślęczka (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

It is shown that every Polish space X with d i m T X d admits a compact subspace Y such that d i m H Y d where d i m T and d i m H denote the topological and Hausdorff dimensions, respectively.

Ordinals in topological groups

Raushan Z. Buzyakova (2007)

Fundamenta Mathematicae

Similarity:

We show that if an uncountable regular cardinal τ and τ + 1 embed in a topological group G as closed subspaces then G is not normal. We also prove that an uncountable regular cardinal cannot be embedded in a torsion free Abelian group that is hereditarily normal. These results are corollaries to our main results about ordinals in topological groups. To state the main results, let τ be an uncountable regular cardinal and G a T₁ topological group. We prove, among others, the following...

Classification of spaces of continuous functions on ordinals

Leonid V. Genze, Sergei P. Gul&amp;#039;ko, Tat&#039;ana E. Khmyleva (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We conclude the classification of spaces of continuous functions on ordinals carried out by Górak [Górak R., Function spaces on ordinals, Comment. Math. Univ. Carolin. 46 (2005), no. 1, 93–103]. This gives a complete topological classification of the spaces C p ( [ 0 , α ] ) of all continuous real-valued functions on compact segments of ordinals endowed with the topology of pointwise convergence. Moreover, this topological classification of the spaces C p ( [ 0 , α ] ) completely coincides with their uniform classification. ...

A countably cellular topological group all of whose countable subsets are closed need not be -factorizable

Mihail G. Tkachenko (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We construct a Hausdorff topological group G such that 1 is a precalibre of G (hence, G has countable cellularity), all countable subsets of G are closed and C -embedded in G , but G is not -factorizable. This solves Problem 8.6.3 from the book “Topological Groups and Related Structures" (2008) in the negative.

Isomorphisms of Cartesian Products of ℓ-Power Series Spaces

E. Karapınar, M. Yurdakul, V. Zahariuta (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let ℓ be a Banach sequence space with a monotone norm · , in which the canonical system ( e i ) is a normalized symmetric basis. We give a complete isomorphic classification of Cartesian products E 0 ( a ) × E ( b ) where E 0 ( a ) = K ( e x p ( - p - 1 a i ) ) and E ( b ) = K ( e x p ( p a i ) ) are finite and infinite ℓ-power series spaces, respectively. This classification is the generalization of the results by Chalov et al. [Studia Math. 137 (1999)] and Djakov et al. [Michigan Math. J. 43 (1996)] by using the method of compound linear topological invariants developed by...

Linear topological properties of the Lumer-Smirnov class of the polydisc

Marek Nawrocki (1992)

Studia Mathematica

Similarity:

Linear topological properties of the Lumer-Smirnov class L N ( n ) of the unit polydisc n are studied. The topological dual and the Fréchet envelope are described. It is proved that L N ( n ) has a weak basis but it is nonseparable in its original topology. Moreover, it is shown that the Orlicz-Pettis theorem fails for L N ( n ) .

Remarks on flat and differential K -theory

Man-Ho Ho (2014)

Annales mathématiques Blaise Pascal

Similarity:

In this note we prove some results in flat and differential K -theory. The first one is a proof of the compatibility of the differential topological index and the flat topological index by a direct computation. The second one is the explicit isomorphisms between Bunke-Schick differential K -theory and Freed-Lott differential K -theory.

On star covering properties related to countable compactness and pseudocompactness

Marcelo D. Passos, Heides L. Santana, Samuel G. da Silva (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove a number of results on star covering properties which may be regarded as either generalizations or specializations of topological properties related to the ones mentioned in the title of the paper. For instance, we give a new, entirely combinatorial proof of the fact that Ψ -spaces constructed from infinite almost disjoint families are not star-compact. By going a little further we conclude that if X is a star-compact space within a certain class, then X is neither first countable...

Finite groups with two rows which differ in only one entry in character tables

Wenyang Wang, Ni Du (2021)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group. If G has two rows which differ in only one entry in the character table, we call G an RD1-group. We investigate the character tables of RD1-groups and get some necessary and sufficient conditions about RD1-groups.

On universality of countable and weak products of sigma hereditarily disconnected spaces

Taras Banakh, Robert Cauty (2001)

Fundamenta Mathematicae

Similarity:

Suppose a metrizable separable space Y is sigma hereditarily disconnected, i.e., it is a countable union of hereditarily disconnected subspaces. We prove that the countable power X ω of any subspace X ⊂ Y is not universal for the class ₂ of absolute G δ σ -sets; moreover, if Y is an absolute F σ δ -set, then X ω contains no closed topological copy of the Nagata space = W(I,ℙ); if Y is an absolute G δ -set, then X ω contains no closed copy of the Smirnov space σ = W(I,0). On the other hand, the countable...

Remarks on 𝒮 -Closedness in Topological Spaces

Zbigniew Duszyński (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

Corresponding to [27], some properties of S-closed subspaces and subsets 𝒮 -closed relative to a topological space are proved. Conditions under which mappings preserve certain 𝒮 -closed subspaces are investigated.