Displaying similar documents to “Studies on BVPs for IFDEs involved with the Riemann-Liouville type fractional derivatives”

Anti-Periodic Boundary Value Problem for Impulsive Fractional Integro Differential Equations

Anguraj, A., Karthikeyan, P. (2010)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 34A37, 34B15, 26A33, 34C25, 34K37 In this paper we prove the existence of solutions for fractional impulsive differential equations with antiperiodic boundary condition in Banach spaces. The results are obtained by using fractional calculus' techniques and the fixed point theorems.

Existence results for nonlocal boundary value problems for fractional differential equations and inclusions with fractional integral boundary conditions

Sotiris K. Ntouyas (2013)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

This paper studies a new class of nonlocal boundary value problems of nonlinear differential equations and inclusions of fractional order with fractional integral boundary conditions. Some new existence results are obtained by using standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also discussed.

The general solution of impulsive systems with Riemann-Liouville fractional derivatives

Xianmin Zhang, Wenbin Ding, Hui Peng, Zuohua Liu, Tong Shu (2016)

Open Mathematics

Similarity:

In this paper, we study a kind of fractional differential system with impulsive effect and find the formula of general solution for the impulsive fractional-order system by analysis of the limit case (as impulse tends to zero). The obtained result shows that the deviation caused by impulses for fractional-order system is undetermined. An example is also provided to illustrate the result.

Existence of solutions of impulsive boundary value problems for singular fractional differential systems

Yuji Liu (2017)

Mathematica Bohemica

Similarity:

A class of impulsive boundary value problems of fractional differential systems is studied. Banach spaces are constructed and nonlinear operators defined on these Banach spaces. Sufficient conditions are given for the existence of solutions of this class of impulsive boundary value problems for singular fractional differential systems in which odd homeomorphism operators (Definition 2.6) are involved. Main results are Theorem 4.1 and Corollary 4.2. The analysis relies on a well known...

Positive solutions for a system of fractional boundary value problems

Henderson, Johnny, Luca, Rodica

Similarity:

We investigate the existence and multiplicity of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations with nonnegative nonlinearities which can be nonsingular or singular functions, subject to multi-point boundary conditions that contain fractional derivatives.

The general solution for impulsive differential equations with Riemann-Liouville fractional-order q ∈ (1,2)

Xianmin Zhang, Praveen Agarwal, Zuohua Liu, Hui Peng (2015)

Open Mathematics

Similarity:

In this paper we consider the generalized impulsive system with Riemann-Liouville fractional-order q ∈ (1,2) and obtained the error of the approximate solution for this impulsive system by analyzing of the limit case (as impulses approach zero), as well as find the formula for a general solution. Furthermore, an example is given to illustrate the importance of our results.

Existence of positive solutions for a fractional boundary value problem with lower-order fractional derivative dependence on the half-line

Amina Boucenna, Toufik Moussaoui (2014)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

The aim of this paper is to study the existence of solutions to a boundary value problem associated to a nonlinear fractional differential equation where the nonlinear term depends on a fractional derivative of lower order posed on the half-line. An appropriate compactness criterion and suitable Banach spaces are used and so a fixed point theorem is applied to obtain fixed points which are solutions of our problem.

Fractional order impulsive partial hyperbolic differential inclusions with variable times

Saïd Abbas, Mouffak Benchohra, Lech Górniewicz (2011)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

This paper deals with the existence of solutions to some classes of partial impulsive hyperbolic differential inclusions with variable times involving the Caputo fractional derivative. Our works will be considered by using the nonlinear alternative of Leray-Schauder type.