Existence of solutions of impulsive boundary value problems for singular fractional differential systems
Mathematica Bohemica (2017)
- Volume: 142, Issue: 4, page 405-444
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topLiu, Yuji. "Existence of solutions of impulsive boundary value problems for singular fractional differential systems." Mathematica Bohemica 142.4 (2017): 405-444. <http://eudml.org/doc/294874>.
@article{Liu2017,
abstract = {A class of impulsive boundary value problems of fractional differential systems is studied. Banach spaces are constructed and nonlinear operators defined on these Banach spaces. Sufficient conditions are given for the existence of solutions of this class of impulsive boundary value problems for singular fractional differential systems in which odd homeomorphism operators (Definition 2.6) are involved. Main results are Theorem 4.1 and Corollary 4.2. The analysis relies on a well known fixed point theorem: Leray-Schauder Nonlinear Alternative (Lemma 2.1). An example is given to illustrate the efficiency of the main theorems, see Example 5.1.},
author = {Liu, Yuji},
journal = {Mathematica Bohemica},
keywords = {singular fractional differential system; impulsive boundary value problem; fixed point theorem},
language = {eng},
number = {4},
pages = {405-444},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of solutions of impulsive boundary value problems for singular fractional differential systems},
url = {http://eudml.org/doc/294874},
volume = {142},
year = {2017},
}
TY - JOUR
AU - Liu, Yuji
TI - Existence of solutions of impulsive boundary value problems for singular fractional differential systems
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 4
SP - 405
EP - 444
AB - A class of impulsive boundary value problems of fractional differential systems is studied. Banach spaces are constructed and nonlinear operators defined on these Banach spaces. Sufficient conditions are given for the existence of solutions of this class of impulsive boundary value problems for singular fractional differential systems in which odd homeomorphism operators (Definition 2.6) are involved. Main results are Theorem 4.1 and Corollary 4.2. The analysis relies on a well known fixed point theorem: Leray-Schauder Nonlinear Alternative (Lemma 2.1). An example is given to illustrate the efficiency of the main theorems, see Example 5.1.
LA - eng
KW - singular fractional differential system; impulsive boundary value problem; fixed point theorem
UR - http://eudml.org/doc/294874
ER -
References
top- Arara, A., Benchohra, M., Hamidi, N., Nieto, J. J., 10.1016/j.na.2009.06.106, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 580-586. (2010) Zbl1179.26015MR2579326DOI10.1016/j.na.2009.06.106
- Belmekki, M., Nieto, J. J., Rodríguez-López, R., 10.1155/2009/324561, Bound. Value Probl. (electronic only) 2009 (2009), Article ID 324561, 18 pages. (2009) Zbl1181.34006MR2525590DOI10.1155/2009/324561
- Belmekki, M., Nieto, J. J., Rodríguez-López, R., 10.14232/ejqtde.2014.1.16, Electron. J. Qual. Theory Differ. Equ. (electronic only) 2014 (2014), Article No. 16, 27 pages. (2014) Zbl06439060MR3199694DOI10.14232/ejqtde.2014.1.16
- Dehghani, R., Ghanbari, K., Triple positive solutions for boundary value problem of a nonlinear fractional differential equation, Bull. Iran. Math. Soc. 33 (2007), 1-14. (2007) Zbl1148.34008MR2374531
- Karakostas, G. L., Positive solutions for the -Laplacian when is a sup-multiplicative- like function, Electron. J. Differ. Equ. (electronic only) 2004 (2004), Article No. 68, 12 pages. (2004) Zbl1057.34009MR2057655
- Kaufmann, E. R., Mboumi, E., 10.14232/ejqtde.2008.1.3, Electron. J. Qual. Theory Differ. Equ. (electronic only) 2008 (2008), Article No. 3, 11 pages. (2008) Zbl1183.34007MR2369417DOI10.14232/ejqtde.2008.1.3
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/S0304-0208(06)80001-0, North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073DOI10.1016/S0304-0208(06)80001-0
- Kilbas, A. A., Trujillo, J. J., 10.1080/00036810108840931, Appl. Anal. 78 (2001), 153-192. (2001) Zbl1031.34002MR1887959DOI10.1080/00036810108840931
- Lakshmikantham, V., Baĭnov, D. D., Simeonov, P. S., Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics 6. World Scientific, Singapore (1989). (1989) Zbl0719.34002MR1082551
- Liu, Y., Positive solutions for singular FDEs, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 73 (2011), 89-100. (2011) Zbl1240.34113MR2799434
- Liu, Y., 10.1515/tmj-2015-0003, Tbil. Math. J. (electronic only) 8 (2015), 1-22. (2015) Zbl06418062MR3323916DOI10.1515/tmj-2015-0003
- Mainardi, F., 10.1007/978-3-7091-2664-6_7, Fractals and Fractional Calculus in Continuum Mechanics, Udine, 1996 CISM Courses and Lectures 378. Springer, New York (1997), 291-348 A. Carpinteri et al. (1997) MR1611587DOI10.1007/978-3-7091-2664-6_7
- Mawhin, J., Topological Degree Methods in Nonlinear Boundary Value Problems, Expository lectures held at Harvey Mudd College, Claremont, Calif., 1977 CBMS Regional Conference Series in Mathematics 40. American Mathematical Society, Providence (1979). (1979) Zbl0414.34025MR0525202
- Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience Publication. John Wiley & Sons, New York (1993). (1993) Zbl0789.26002MR1219954
- Miller, K. S., Samko, S. G., 10.1080/10652460108819360, Integral Transforms Spec. Funct. 12 (2001), 389-402. (2001) Zbl1035.26012MR1872377DOI10.1080/10652460108819360
- Nahušev, A. M., The Sturm-Liouville problem for a second order ordinary differential equation with fractional derivatives in the lower terms, Sov. Math., Dokl. 18 666-670 (1977), translation from Dokl. Akad. Nauk SSSR 234 1977 308-311. (1977) Zbl0376.34015MR0454145
- Nieto, J. J., 10.1016/j.aml.2010.06.007, Appl. Math. Lett. 23 (2010), 1248-1251. (2010) Zbl1202.34019MR2665605DOI10.1016/j.aml.2010.06.007
- Nieto, J. J., dx.doi.org/10.7153/fdc-01-05, Fract. Differ. Calc. 1 (2011), 99-104. (2011) MR2995577DOIdx.doi.org/10.7153/fdc-01-05
- Podlubny, I., Fractional Differential Equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications Mathematics in Science and Engineering 198. Academic Press, San Diego (1999). (1999) Zbl0924.34008MR1658022
- Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal. 5 (2002), 367-386 correction ibid 6 2003 109-110. (2002) Zbl1042.26003MR1967839
- Rida, S. Z., El-Sherbiny, H. M., Arafa, A. A. M., 10.1016/j.physleta.2007.06.071, Phys. Lett., A 372 (2008), 553-558. (2008) Zbl1217.81068MR2378723DOI10.1016/j.physleta.2007.06.071
- Su, X., 10.1016/j.aml.2008.03.001, Appl. Math. Lett. 22 (2009), 64-69. (2009) Zbl1163.34321MR2483163DOI10.1016/j.aml.2008.03.001
- Wang, X., Bai, C., 10.14232/ejqtde.2011.1.3, Electron. J. Qual. Theory Differ. Equ. (electronic only) 2011 (2011), Article No. 3, 15 pages. (2011) Zbl1207.35029MR2756028DOI10.14232/ejqtde.2011.1.3
- Wei, Z., Dong, W., 10.14232/ejqtde.2011.1.87, Electron. J. Qual. Theory Differ. Equ. (electronic only) 2011 (2011), Article No. 87, 13 pages. (2011) Zbl06528091MR2854026DOI10.14232/ejqtde.2011.1.87
- Wei, Z., Dong, W., Che, J., 10.1016/j.na.2010.07.003, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 3232-3238. (2010) Zbl1202.26017MR2680017DOI10.1016/j.na.2010.07.003
- Yuan, C., Multiple positive solutions for -type semipositone conjugate boundary value problems for coupled systems of nonlinear fractional differential equations, Electron. J. Qual. Theory Differ. Equ. (electronic only) 2011 (2011), Article No. 13, 12 pages. (2011) Zbl1261.34014MR2771149
- Yuan, C., Jiang, D., O'Regan, D., Agarwal, R. P., 10.14232/ejqtde.2012.1.13, Electron. J. Qual. Theory Differ. Equ. (electronic only) 2012 (2012), Article No. 13, 17 pages. (2012) Zbl06476163MR2889755DOI10.14232/ejqtde.2012.1.13
- Zhang, S., Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differ. Equ. (electronic only) 2006 (2006), Article No. 36, 12 pages. (2006) Zbl1096.34016MR2213580
- Zhao, Y., Sun, S., Han, Z., Zhang, M., 10.1016/j.amc.2011.01.103, Appl. Math. Comput. 217 (2011), 6950-6958. (2011) Zbl1227.34011MR2775685DOI10.1016/j.amc.2011.01.103
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.