Displaying similar documents to “The second-order methods in discrete optimal control problems”

Primal interior point method for minimization of generalized minimax functions

Ladislav Lukšan, Ctirad Matonoha, Jan Vlček (2010)

Kybernetika

Similarity:

In this paper, we propose a primal interior-point method for large sparse generalized minimax optimization. After a short introduction, where the problem is stated, we introduce the basic equations of the Newton method applied to the KKT conditions and propose a primal interior-point method. (i. e. interior point method that uses explicitly computed approximations of Lagrange multipliers instead of their updates). Next we describe the basic algorithm and give more details concerning...

An accurate active set Newton algorithm for large scale bound constrained optimization

Li Sun, Guoping He, Yongli Wang, Changyin Zhou (2011)

Applications of Mathematics

Similarity:

A new algorithm for solving large scale bound constrained minimization problems is proposed. The algorithm is based on an accurate identification technique of the active set proposed by Facchinei, Fischer and Kanzow in 1998. A further division of the active set yields the global convergence of the new algorithm. In particular, the convergence rate is superlinear without requiring the strict complementarity assumption. Numerical tests demonstrate the efficiency and performance of the...

An active set strategy based on the multiplier function or the gradient

Li Sun, Liang Fang, Guoping He (2010)

Applications of Mathematics

Similarity:

We employ the active set strategy which was proposed by Facchinei for solving large scale bound constrained optimization problems. As the special structure of the bound constrained problem, a simple rule is used for updating the multipliers. Numerical results show that the active set identification strategy is practical and efficient.

Convergence of prox-regularization methods for generalized fractional programming

Ahmed Roubi (2002)

RAIRO - Operations Research - Recherche Opérationnelle

Similarity:

We analyze the convergence of the prox-regularization algorithms introduced in [1], to solve generalized fractional programs, without assuming that the optimal solutions set of the considered problem is nonempty, and since the objective functions are variable with respect to the iterations in the auxiliary problems generated by Dinkelbach-type algorithms DT1 and DT2, we consider that the regularizing parameter is also variable. On the other hand we study the convergence when the iterates...