Displaying similar documents to “Complex Oscillations and Limit Cycles in Autonomous Two-Component Incommensurate Fractional Dynamical Systems”

IVPs for singular multi-term fractional differential equations with multiple base points and applications

Yuji Liu, Pinghua Yang (2014)

Applicationes Mathematicae

Similarity:

The purpose of this paper is to study global existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. By constructing a special Banach space and employing fixed-point theorems, some sufficient conditions are obtained for the global existence and uniqueness of solutions of this kind of equations involving Caputo fractional derivatives and multiple base points. We apply the results to solve the forced logistic model with multi-term...

On contraction principle applied to nonlinear fractional differential equations with derivatives of order α ∈ (0,1)

Małgorzata Klimek (2011)

Banach Center Publications

Similarity:

One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.

Bifurcations of the time-fractional generalized coupled Hirota-Satsuma KdV system

Marwan Alquran, Kamel Al-Khaled, Mohammed Ali, Omar Abu Arqub (2017)

Waves, Wavelets and Fractals

Similarity:

The Hirota-Satsuma model with fractional derivative is considered to provide some characteristics of memory embedded into the system. The modified system is analyzed analytically using a new technique called residual power series method. We observe thatwhen the value of memory index (time-fractional order) is close to zero, the solutions bifurcate and produce a wave-like pattern.

Modelling of Piezothermoelastic Beam with Fractional Order Derivative

Rajneesh Kumar, Poonam Sharma (2016)

Curved and Layered Structures

Similarity:

This paper deals with the study of transverse vibrations in piezothermoelastic beam resonators with fractional order derivative. The fractional order theory of thermoelasticity developed by Sherief et al. [1] has been used to study the problem. The expressions for frequency shift and damping factor are derived for a thermo micro-electromechanical (MEM) and thermo nano-electromechanical (NEM) beam resonators clamped on one side and free on another. The effect of fractional order derivative...

Theorems on some families of fractional differential equations and their applications

Gülçin Bozkurt, Durmuş Albayrak, Neşe Dernek (2019)

Applications of Mathematics

Similarity:

We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for...

Positivity and contractivity in the dynamics of clusters’ splitting with derivative of fractional order

Emile Franc Doungmo Goufo, Stella Mugisha (2015)

Open Mathematics

Similarity:

Classical models of clusters’ fission have failed to fully explain strange phenomenons like the phenomenon of shattering (Ziff et al., 1987) and the sudden appearance of infinitely many particles in some systems with initial finite particles number. Furthermore, the bounded perturbation theorem presented in (Pazy, 1983) is not in general true in solution operators theory for models of fractional order γ (with 0 < γ ≤ 1). In this article, we introduce and study a model that can be...