Displaying similar documents to “Calculus of Variations with Classical and Fractional Derivatives”

Fractional derivative generalization of Noether’s theorem

Maryam Khorshidi, Mehdi Nadjafikhah, Hossein Jafari (2015)

Open Mathematics

Similarity:

The symmetry of the Bagley–Torvik equation is investigated by using the Lie group analysis method. The Bagley–Torvik equation in the sense of the Riemann–Liouville derivatives is considered. Then we prove a Noetherlike theorem for fractional Lagrangian densities with the Riemann-Liouville fractional derivative and few examples are presented as an application of the theory.

Hamilton’s Principle with Variable Order Fractional Derivatives

Atanackovic, Teodor, Pilipovic, Stevan (2011)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33, 70H25, 46F12, 34K37 Dedicated to 80-th birthday of Prof. Rudolf Gorenflo We propose a generalization of Hamilton’s principle in which the minimization is performed with respect to the admissible functions and the order of the derivation. The Euler–Lagrange equations for such minimization are derived. They generalize the classical Euler-Lagrange equation. Also, a new variational problem is formulated in the case when the order of the derivative is defined...

On a Differential Equation with Left and Right Fractional Derivatives

Atanackovic, Teodor, Stankovic, Bogoljub (2007)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05 We treat the fractional order differential equation that contains the left and right Riemann-Liouville fractional derivatives. Such equations arise as the Euler-Lagrange equation in variational principles with fractional derivatives. We reduce the problem to a Fredholm integral equation and construct a solution in the space of continuous functions. Two competing approaches in formulating differential equations...

Theorems on some families of fractional differential equations and their applications

Gülçin Bozkurt, Durmuş Albayrak, Neşe Dernek (2019)

Applications of Mathematics

Similarity:

We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for...

A Poster about the Recent History of Fractional Calculus

Machado, Tenreiro, Kiryakova, Virginia, Mainardi, Francesco (2010)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22 In the last decades fractional calculus became an area of intense re-search and development. The accompanying poster illustrates the major contributions during the period 1966-2010.

Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis

Astha Chauhan, Rajan Arora (2019)

Communications in Mathematics

Similarity:

In this work, the fractional Lie symmetry method is applied for symmetry analysis of time fractional Kupershmidt equation. Using the Lie symmetry method, the symmetry generators for time fractional Kupershmidt equation are obtained with Riemann-Liouville fractional derivative. With the help of symmetry generators, the fractional partial differential equation is reduced into the fractional ordinary differential equation using Erdélyi-Kober fractional differential operator. The conservation...