Displaying similar documents to “Calculus of Variations with Classical and Fractional Derivatives”

Fractional derivative generalization of Noether’s theorem

Maryam Khorshidi, Mehdi Nadjafikhah, Hossein Jafari (2015)

Open Mathematics

Similarity:

The symmetry of the Bagley–Torvik equation is investigated by using the Lie group analysis method. The Bagley–Torvik equation in the sense of the Riemann–Liouville derivatives is considered. Then we prove a Noetherlike theorem for fractional Lagrangian densities with the Riemann-Liouville fractional derivative and few examples are presented as an application of the theory.

Hamilton’s Principle with Variable Order Fractional Derivatives

Atanackovic, Teodor, Pilipovic, Stevan (2011)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33, 70H25, 46F12, 34K37 Dedicated to 80-th birthday of Prof. Rudolf Gorenflo We propose a generalization of Hamilton’s principle in which the minimization is performed with respect to the admissible functions and the order of the derivation. The Euler–Lagrange equations for such minimization are derived. They generalize the classical Euler-Lagrange equation. Also, a new variational problem is formulated in the case when the order of the derivative is defined...

On a Differential Equation with Left and Right Fractional Derivatives

Atanackovic, Teodor, Stankovic, Bogoljub (2007)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05 We treat the fractional order differential equation that contains the left and right Riemann-Liouville fractional derivatives. Such equations arise as the Euler-Lagrange equation in variational principles with fractional derivatives. We reduce the problem to a Fredholm integral equation and construct a solution in the space of continuous functions. Two competing approaches in formulating differential equations...

A Poster about the Recent History of Fractional Calculus

Machado, Tenreiro, Kiryakova, Virginia, Mainardi, Francesco (2010)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22 In the last decades fractional calculus became an area of intense re-search and development. The accompanying poster illustrates the major contributions during the period 1966-2010.

On contraction principle applied to nonlinear fractional differential equations with derivatives of order α ∈ (0,1)

Małgorzata Klimek (2011)

Banach Center Publications

Similarity:

One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.