Displaying similar documents to “Approximation of Univariate Set-Valued Functions - an Overview”

Approximation of set-valued functions with compact images-an overview

Nira Dyn, Elza Farkhi (2006)

Banach Center Publications

Similarity:

Continuous set-valued functions with convex images can be approximated by known positive operators of approximation, such as the Bernstein polynomial operators and the Schoenberg spline operators, with the usual sum between numbers replaced by the Minkowski sum of sets. Yet these operators fail to approximate set-valued functions with general sets as images. The Bernstein operators with growing degree, and the Schoenberg operators, when represented as spline subdivision schemes, converge...

Compact operators and approximation spaces

Fernando Cobos, Oscar Domínguez, Antón Martínez (2014)

Colloquium Mathematicae

Similarity:

We investigate compact operators between approximation spaces, paying special attention to the limit case. Applications are given to embeddings between Besov spaces.

Continuous dependence on parameters of the fixed points set for some set-valued operators

Eduard Kirr, Adrian Petruel (1997)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper we extend the notion of I⁰-continuity and uniform I⁰-continuity from [2] to set-valued operators. Using these properties, we prove some results on continuous dependence of the fixed points set for families of contractive type set-valued operators.

On the norm of a projection onto the space of compact operators

Joosep Lippus, Eve Oja (2007)

Studia Mathematica

Similarity:

Let X and Y be Banach spaces and let 𝓐(X,Y) be a closed subspace of 𝓛(X,Y), the Banach space of bounded linear operators from X to Y, containing the subspace 𝒦(X,Y) of compact operators. We prove that if Y has the metric compact approximation property and a certain geometric property M*(a,B,c), where a,c ≥ 0 and B is a compact set of scalars (Kalton's property (M*) = M*(1, {-1}, 1)), and if 𝓐(X,Y) ≠ 𝒦(X,Y), then there is no projection from 𝓐(X,Y) onto 𝒦(X,Y) with norm less than...