The magnetic Schrödinger operator and reverse Hölder class
Zhongwei Shen (1996)
Journées équations aux dérivées partielles
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Zhongwei Shen (1996)
Journées équations aux dérivées partielles
Similarity:
Victor Ivrii (1991)
Journées équations aux dérivées partielles
Similarity:
Tuan Duong, Anh (2012)
Serdica Mathematical Journal
Similarity:
2010 Mathematics Subject Classification: 81Q20 (35P25, 81V10). The purpose of this paper is to study the Schrödinger operator P(B,w) = (Dx-By^2+Dy^2+w^2x^2+V(x,y),(x,y) О R^2, with the magnetic field B large enough and the constant w № 0 is fixed and proportional to the strength of the electric field. Under certain assumptions on the potential V, we prove the existence of resonances near Landau levels as B®Ґ. Moreover, we show that the width of resonances is of size O(B^-Ґ). ...
George D. Raikov (1994)
Annales de l'I.H.P. Physique théorique
Similarity:
Jecko, Thierry (2005)
Mathematical Physics Electronic Journal [electronic only]
Similarity:
Hansson, Anders M. (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Griesemer, Marcel, Lewis, Roger T., Siedentop, Heinz (1999)
Documenta Mathematica
Similarity:
S.Z: Levendorski (1996)
Mathematische Zeitschrift
Similarity:
Mouez Dimassi, Vesselin Petkov (2003-2004)
Séminaire Équations aux dérivées partielles
Similarity:
Giuseppe Maria Coclite (2002)
Annales Polonici Mathematici
Similarity:
We prove the existence of a sequence of radial solutions with negative energy of the Schrödinger-Maxwell equations under the action of a negative potential.