Knot theory programs KNOT2000 (K2K) + LinKnot(K2K)+LinKnot(K2KC)
S. Jablan, R. Sazdanovic (2003)
Visual Mathematics
Similarity:
S. Jablan, R. Sazdanovic (2003)
Visual Mathematics
Similarity:
Yasutaka Nakanishi (1996)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
This note is a continuation of a former paper, where we have discussed the unknotting number of knots with respect to knot diagrams. We will show that for every minimum-crossing knot-diagram among all unknotting-number-one two-bridge knot there exist crossings whose exchange yields the trivial knot, if the third Tait conjecture is true.
Dugopolski, Mark J. (1985)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Corinne Cerf (2002)
Visual Mathematics
Similarity:
Roger Fenn, Louis H. Kauffman, Vassily O. Manturov (2005)
Fundamenta Mathematicae
Similarity:
The present paper gives a quick survey of virtual and classical knot theory and presents a list of unsolved problems about virtual knots and links. These are all problems in low-dimensional topology with a special emphasis on virtual knots. In particular, we touch new approaches to knot invariants such as biquandles and Khovanov homology theory. Connections to other geometrical and combinatorial aspects are also discussed.
Louis H. Kauffman, Vassily O. Manturov (2005)
Fundamenta Mathematicae
Similarity:
We describe new approaches for constructing virtual knot invariants. The main background of this paper comes from formulating and bringing together the ideas of biquandle [KR], [FJK], the virtual quandle [Ma2], the ideas of quaternion biquandles by Roger Fenn and Andrew Bartholomew [BF], the concepts and properties of long virtual knots [Ma10], and other ideas in the interface between classical and virtual knot theory. In the present paper we present a new algebraic construction of virtual...
Hendricks, Jacob (2004)
Algebraic & Geometric Topology
Similarity:
Vaughan Jones, Józef Przytycki (1998)
Banach Center Publications
Similarity:
We show that Lissajous knots are equivalent to billiard knots in a cube. We consider also knots in general 3-dimensional billiard tables. We analyse symmetry of knots in billiard tables and show in particular that the Alexander polynomial of a Lissajous knot is a square modulo 2.
Seiichi Kamada (2001)
Fundamenta Mathematicae
Similarity:
A Wirtinger presentation of a knot group is obtained from a diagram of the knot. T. Yajima showed that for a 2-knot or a closed oriented surface embedded in the Euclidean 4-space, a Wirtinger presentation of the knot group is obtained from a diagram in an analogous way. J. S. Carter and M. Saito generalized the method to non-orientable surfaces in 4-space by cutting non-orientable sheets of their diagrams by some arcs. We give a modification to their method so that one does not need...
Denis Petrovich Ilyutko, Vassily Olegovich Manturov, Igor Mikhailovich Nikonov (2014)
Banach Center Publications
Similarity:
In [12, 15] it was shown that in some knot theories the crucial role is played by parity, i.e. a function on crossings valued in {0,1} and behaving nicely with respect to Reidemeister moves. Any parity allows one to construct functorial mappings from knots to knots, to refine many invariants and to prove minimality theorems for knots. In the present paper, we generalise the notion of parity and construct parities with coefficients from an abelian group rather than ℤ₂ and investigate...
Willerton, Simon (2002)
Experimental Mathematics
Similarity:
Isabel Darcy, De Sumners (1998)
Banach Center Publications
Similarity:
The following is an expository article meant to give a simplified introduction to applications of topology to DNA.
Schmitt, Peter (1997)
Beiträge zur Algebra und Geometrie
Similarity:
Vladimir Chernov, Rustam Sadykov (2016)
Fundamenta Mathematicae
Similarity:
An elementary stabilization of a Legendrian knot L in the spherical cotangent bundle ST*M of a surface M is a surgery that results in attaching a handle to M along two discs away from the image in M of the projection of the knot L. A virtual Legendrian isotopy is a composition of stabilizations, destabilizations and Legendrian isotopies. A class of virtual Legendrian isotopy is called a virtual Legendrian knot. In contrast to Legendrian knots, virtual Legendrian knots...
Kuniaki Horie, Mitsuko Horie (2003)
Acta Arithmetica
Similarity:
P. V. Koseleff, D. Pecker (2014)
Banach Center Publications
Similarity:
We show that every knot can be realized as a billiard trajectory in a convex prism. This proves a conjecture of Jones and Przytycki.
Mohamed Ait Nouh, Akira Yasuhara (2001)
Revista Matemática Complutense
Similarity:
We give a necessary condition for a torus knot to be untied by a single twisting. By using this result, we give infinitely many torus knots that cannot be untied by a single twisting.