A Proof And An Extension Of A Theorem Of G. Birkoff
Svetozar Milić (1978)
Publications de l'Institut Mathématique
Similarity:
Svetozar Milić (1978)
Publications de l'Institut Mathématique
Similarity:
A. Kozek (1973)
Applicationes Mathematicae
Similarity:
W. Kulpa (1976)
Colloquium Mathematicae
Similarity:
Luukkainen, Jouni (1993)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity:
Žarko Mijajlović (1977)
Publications de l'Institut Mathématique
Similarity:
M. R. Koushesh
Similarity:
Let X be a space. A space Y is called an extension of X if Y contains X as a dense subspace. For an extension Y of X the subspace Y∖X of Y is called the remainder of Y. Two extensions of X are said to be equivalent if there is a homeomorphism between them which fixes X pointwise. For two (equivalence classes of) extensions Y and Y' of X let Y ≤ Y' if there is a continuous mapping of Y' into Y which fixes X pointwise. Let 𝓟 be a topological property. An extension Y of X is called a 𝓟-extension...
A. Błaszczyk, U. Lorek (1978)
Colloquium Mathematicae
Similarity:
Paweł Szeptycki (1975)
Studia Mathematica
Similarity:
T. K. Pal, M. Maiti, J. Achari (1976)
Matematički Vesnik
Similarity:
D. W. Hajek (1986)
Matematički Vesnik
Similarity:
F.-V. Kuhlmann, M. Pank, P. Roquette (1986)
Manuscripta mathematica
Similarity:
Marino Gran, George Janelidze, Manuela Sobral (2019)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We develop a theory of split extensions of unitary magmas, which includes defining such extensions and describing them via suitably defined semidirect product, yielding an equivalence between the categories of split extensions and of (suitably defined) actions of unitary magmas on unitary magmas. The class of split extensions is pullback stable but not closed under composition. We introduce two subclasses of it that have both of these properties.
I. Dobrakoy
Similarity:
CONTENTSIntroduction....................................................................................... 5§ 1. On submeasures.................................................................... 6§ 2. Extension of submeasures................................................... 21§ 3. Extension of subcontents....................................................... 27References....................................................................................... 35
A. Torgašev (1976)
Matematički Vesnik
Similarity: