The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Polynomials in the Volterra and Ritt operators”

The existence of solutions to a Volterra integral equation

Wojciech Mydlarczyk (1996)

Annales Polonici Mathematici

Similarity:

We study the equation u = k∗g(u) with k such that ln k is convex or concave and g is monotonic. Some necessary and sufficient conditions for the existence of nontrivial continuous solutions u of this equation are given.

New conditions for the existence of non trivial solutions to some Volterra equations.

W. Okrasinski (1990)

Extracta Mathematicae

Similarity:

We consider the following Volterra equation: (1)       u(x) = ∫0 x k(x-s) g(u(s)) ds,   where, k: [0, δ0] → R is an increasing absolutely continuous function such that k(0) = 0 g: [0,+ ∞) → [0,+ ∞) is an increasing absolutely continuous function such that g(0) = 0 and g(u)/u → ∞ as u → 0+ (see [3]). Let us note that (1) has always...

Rota-Baxter operators and Bernoulli polynomials

Vsevolod Gubarev (2021)

Communications in Mathematics

Similarity:

We develop the connection between Rota-Baxter operators arisen from algebra and mathematical physics and Bernoulli polynomials. We state that a trivial property of Rota-Baxter operators implies the symmetry of the power sum polynomials and Bernoulli polynomials. We show how Rota-Baxter operators equalities rewritten in terms of Bernoulli polynomials generate identities for the latter.