The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Quasialgebraic functions”

Algebraic Numbers

Yasushige Watase (2016)

Formalized Mathematics

Similarity:

This article provides definitions and examples upon an integral element of unital commutative rings. An algebraic number is also treated as consequence of a concept of “integral”. Definitions for an integral closure, an algebraic integer and a transcendental numbers [14], [1], [10] and [7] are included as well. As an application of an algebraic number, this article includes a formal proof of a ring extension of rational number field ℚ induced by substitution of an algebraic number to...

Reduction of semialgebraic constructible functions

Ludwig Bröcker (2005)

Annales Polonici Mathematici

Similarity:

Let R be a real closed field with a real valuation v. A ℤ-valued semialgebraic function on Rⁿ is called algebraic if it can be written as the sign of a symmetric bilinear form over R[X₁,. .., Xₙ]. We show that the reduction of such a function with respect to v is again algebraic on the residue field. This implies a corresponding result for limits of algebraic functions in definable families.

Multiplicative dependence of shifted algebraic numbers

Paulius Drungilas, Artūras Dubickas (2003)

Colloquium Mathematicae

Similarity:

We show that the set obtained by adding all sufficiently large integers to a fixed quadratic algebraic number is multiplicatively dependent. So also is the set obtained by adding rational numbers to a fixed cubic algebraic number. Similar questions for algebraic numbers of higher degrees are also raised. These are related to the Prouhet-Tarry-Escott type problems and can be applied to the zero-distribution and universality of some zeta-functions.

Rational approximations to algebraic Laurent series with coefficients in a finite field

Alina Firicel (2013)

Acta Arithmetica

Similarity:

We give a general upper bound for the irrationality exponent of algebraic Laurent series with coefficients in a finite field. Our proof is based on a method introduced in a different framework by Adamczewski and Cassaigne. It makes use of automata theory and, in our context, of a classical theorem due to Christol. We then introduce a new approach which allows us to strongly improve this general bound in many cases. As an illustration, we give a few examples of algebraic Laurent series...