The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On derivations and crossed homomorphisms”

Isometries of the unitary groups in C*-algebras

Osamu Hatori (2014)

Studia Mathematica

Similarity:

We give a complete description of the structure of surjective isometries between the unitary groups of unital C*-algebras. While any surjective isometry between the unitary groups of von Neumann algebras can be extended to a real-linear Jordan *-isomorphism between the relevant von Neumann algebras, this is not the case for general unital C*-algebras. We show that the unitary groups of two C*-algebras are isomorphic as metric groups if and only if the C*-algebras are isomorphic in the...

Characterizations of amenable representations of compact groups

Michael Yin-Hei Cheng (2012)

Studia Mathematica

Similarity:

Let G be a locally compact group and let π be a unitary representation. We study amenability and H-amenability of π in terms of the weak closure of (π ⊗ π)(G) and factorization properties of associated coefficient subspaces (or subalgebras) in B(G). By applying these results, we obtain some new characterizations of amenable groups.

On a method of determining supports of Thoma's characters of discrete groups

Ernest Płonka (1997)

Annales Polonici Mathematici

Similarity:

We present a new approach to determining supports of extreme, normed by 1, positive definite class functions of discrete groups, i.e. characters in the sense of E. Thoma [8]. Any character of a group produces a unitary representation and thus a von Neumann algebra of linear operators with finite normal trace. We use a theorem of H. Umegaki [9] on the uniqueness of conditional expectation in finite von Neumann algebras. Some applications and examples are given.

Triple derivations on von Neumann algebras

Robert Pluta, Bernard Russo (2015)

Studia Mathematica

Similarity:

It is well known that every derivation of a von Neumann algebra into itself is an inner derivation and that every derivation of a von Neumann algebra into its predual is inner. It is less well known that every triple derivation (defined below) of a von Neumann algebra into itself is an inner triple derivation. We examine to what extent all triple derivations of a von Neumann algebra into its predual are inner. This rarely happens but it comes close. We prove a (triple)...