Galvin Tree-Games
E. C. Milner (1985)
Publications du Département de mathématiques (Lyon)
Similarity:
E. C. Milner (1985)
Publications du Département de mathématiques (Lyon)
Similarity:
Đuro Kurepa (1968)
Publications de l'Institut Mathématique
Similarity:
Rimlinger, Frank (1992)
Experimental Mathematics
Similarity:
D. Kurepa (1977)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Z. A. Łomnicki (1973)
Applicationes Mathematicae
Similarity:
Ivan Gutman, Yeong-Nan Yeh (1993)
Publications de l'Institut Mathématique
Similarity:
A. Kośliński (1987)
Applicationes Mathematicae
Similarity:
Arnaud Carayol, Christof Löding, Damian Niwinski, Igor Walukiewicz (2010)
Open Mathematics
Similarity:
We give a new proof showing that it is not possible to define in monadic second-order logic (MSO) a choice function on the infinite binary tree. This result was first obtained by Gurevich and Shelah using set theoretical arguments. Our proof is much simpler and only uses basic tools from automata theory. We show how the result can be used to prove the inherent ambiguity of languages of infinite trees. In a second part we strengthen the result of the non-existence of an MSO-definable...
Stevo Todorčević (1980)
Publications de l'Institut Mathématique
Similarity:
Masayoshi Matsushita, Yota Otachi, Toru Araki (2015)
Discussiones Mathematicae Graph Theory
Similarity:
Two spanning trees T1 and T2 of a graph G are completely independent if, for any two vertices u and v, the paths from u to v in T1 and T2 are internally disjoint. For a graph G, we denote the maximum number of pairwise completely independent spanning trees by cist(G). In this paper, we consider cist(G) when G is a partial k-tree. First we show that [k/2] ≤ cist(G) ≤ k − 1 for any k-tree G. Then we show that for any p ∈ {[k/2], . . . , k − 1}, there exist infinitely many k-trees G such...
Uschi Heuter (1991)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
Similarity:
Rains, E.M., Sloane, N.J.A. (1999)
Journal of Integer Sequences [electronic only]
Similarity: