Displaying similar documents to “Club-guessing and non-structure of trees”

Galvin Tree-Games

E. C. Milner (1985)

Publications du Département de mathématiques (Lyon)

Similarity:

On A-Trees

Đuro Kurepa (1968)

Publications de l'Institut Mathématique

Similarity:

Choice functions and well-orderings over the infinite binary tree

Arnaud Carayol, Christof Löding, Damian Niwinski, Igor Walukiewicz (2010)

Open Mathematics

Similarity:

We give a new proof showing that it is not possible to define in monadic second-order logic (MSO) a choice function on the infinite binary tree. This result was first obtained by Gurevich and Shelah using set theoretical arguments. Our proof is much simpler and only uses basic tools from automata theory. We show how the result can be used to prove the inherent ambiguity of languages of infinite trees. In a second part we strengthen the result of the non-existence of an MSO-definable...

Completely Independent Spanning Trees in (Partial) k-Trees

Masayoshi Matsushita, Yota Otachi, Toru Araki (2015)

Discussiones Mathematicae Graph Theory

Similarity:

Two spanning trees T1 and T2 of a graph G are completely independent if, for any two vertices u and v, the paths from u to v in T1 and T2 are internally disjoint. For a graph G, we denote the maximum number of pairwise completely independent spanning trees by cist(G). In this paper, we consider cist(G) when G is a partial k-tree. First we show that [k/2] ≤ cist(G) ≤ k − 1 for any k-tree G. Then we show that for any p ∈ {[k/2], . . . , k − 1}, there exist infinitely many k-trees G such...