Displaying similar documents to “Amenability and Ramsey theory in the metric setting”

Regularity of sets with constant intrinsic normal in a class of Carnot groups

Marco Marchi (2014)

Annales de l’institut Fourier

Similarity:

In this Note, we define a class of stratified Lie groups of arbitrary step (that are called “groups of type ” throughout the paper), and we prove that, in these groups, sets with constant intrinsic normal are vertical halfspaces. As a consequence, the reduced boundary of a set of finite intrinsic perimeter in a group of type is rectifiable in the intrinsic sense (De Giorgi’s rectifiability theorem). This result extends the previous one proved by Franchi, Serapioni & Serra Cassano...

Metric groups, unitary representations and continuous logic

Aleksander Ivanov (2021)

Communications in Mathematics

Similarity:

We describe how properties of metric groups and of unitary representations of metric groups can be presented in continuous logic. In particular we find L ω 1 ω -axiomatization of amenability. We also show that in the case of locally compact groups some uniform version of the negation of Kazhdan’s property (T) can be viewed as a union of first-order axiomatizable classes. We will see when these properties are preserved under taking elementary substructures.

The Fibonacci automorphism of free Burnside groups

Ashot S. Pahlevanyan (2011)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Similarity:

We prove that the Fibonacci morphism is an automorphism of infinite order of free Burnside groups for all odd n 665 and even n = 16 k 8000 .

A problem of Kollár and Larsen on finite linear groups and crepant resolutions

Robert Guralnick, Pham Tiep (2012)

Journal of the European Mathematical Society

Similarity:

The notion of age of elements of complex linear groups was introduced by M. Reid and is of importance in algebraic geometry, in particular in the study of crepant resolutions and of quotients of Calabi–Yau varieties. In this paper, we solve a problem raised by J. Kollár and M. Larsen on the structure of finite irreducible linear groups generated by elements of age 1 . More generally, we bound the dimension of finite irreducible linear groups generated by elements of bounded deviation....

Amenability and unique ergodicity of automorphism groups of Fraïssé structures

Andy Zucker (2014)

Fundamenta Mathematicae

Similarity:

In this paper we consider those Fraïssé classes which admit companion classes in the sense of [KPT]. We find a necessary and sufficient condition for the automorphism group of the Fraïssé limit to be amenable and apply it to prove the non-amenability of the automorphism groups of the directed graph S(3) and the boron tree structure T. Also, we provide a negative answer to the Unique Ergodicity-Generic Point problem of Angel-Kechris-Lyons [AKL]. By considering G L ( V ) , where V is the countably...

A López-Escobar theorem for metric structures, and the topological Vaught conjecture

Samuel Coskey, Martino Lupini (2016)

Fundamenta Mathematicae

Similarity:

We show that a version of López-Escobar’s theorem holds in the setting of model theory for metric structures. More precisely, let denote the Urysohn sphere and let Mod(,) be the space of metric -structures supported on . Then for any Iso()-invariant Borel function f: Mod(,) → [0,1], there exists a sentence ϕ of ω ω such that for all M ∈ Mod(,) we have f ( M ) = ϕ M . This answers a question of Ivanov and Majcher-Iwanow. We prove several consequences, for example every orbit equivalence relation of...

On the metric reflection of a pseudometric space in ZF

Horst Herrlich, Kyriakos Keremedis (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show: (i) The countable axiom of choice 𝐂𝐀𝐂 is equivalent to each one of the statements: (a) a pseudometric space is sequentially compact iff its metric reflection is sequentially compact, (b) a pseudometric space is complete iff its metric reflection is complete. (ii) The countable multiple choice axiom 𝐂𝐌𝐂 is equivalent to the statement: (a) a pseudometric space is Weierstrass-compact iff its metric reflection is Weierstrass-compact. (iii) The axiom of choice 𝐀𝐂 is equivalent to each...

Deformation theory and finite simple quotients of triangle groups I

Michael Larsen, Alexander Lubotzky, Claude Marion (2014)

Journal of the European Mathematical Society

Similarity:

Let 2 a b c with μ = 1 / a + 1 / b + 1 / c < 1 and let T = T a , b , c = x , y , z : x a = y b = z c = x y z = 1 be the corresponding hyperbolic triangle group. Many papers have been dedicated to the following question: what are the finite (simple) groups which appear as quotients of T ? (Classically, for ( a , b , c ) = ( 2 , 3 , 7 ) and more recently also for general ( a , b , c ) .) These papers have used either explicit constructive methods or probabilistic ones. The goal of this paper is to present a new approach based on the theory of representation varieties (via deformation theory). As a corollary we essentially...

A new characterization of Suzuki groups

Behnam Ebrahimzadeh, Reza Mohammadyari (2019)

Archivum Mathematicum

Similarity:

One of the important questions that remains after the classification of the finite simple groups is how to recognize a simple group via specific properties. For example, authors have been able to use graphs associated to element orders and to number of elements with specific orders to determine simple groups up to isomorphism. In this paper, we prove that Suzuki groups S z ( q ) , where q ± 2 q + 1 is a prime number can be uniquely determined by the order of group and the number of elements with the same...