Displaying similar documents to “Nonhyperbolic one-dimensional invariant sets with a countably infinite collection of inhomogeneities”

The Lindelöf number greater than continuum is u-invariant

Arbit, A. V. (2011)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 54C35, 54D20, 54C60. Two Tychonoff spaces X and Y are said to be l-equivalent (u-equivalent) if Cp(X) and Cp(Y) are linearly (uniformly) homeomorphic. N. V. Velichko proved that countable Lindelöf number is preserved by the relation of l-equivalence. A. Bouziad strengthened this result and proved that any Lindelöf number is preserved by the relation of l-equivalence. In this paper it has been proved that the Lindelöf number greater...

Continuum many tent map inverse limits with homeomorphic postcritical ω-limit sets

Chris Good, Brian E. Raines (2006)

Fundamenta Mathematicae

Similarity:

We demonstrate that the set of topologically distinct inverse limit spaces of tent maps with a Cantor set for its postcritical ω-limit set has cardinality of the continuum. The set of folding points (i.e. points at which the space is not homeomorphic to the product of a zero-dimensional set and an arc) of each of these spaces is also a Cantor set.

Inverse Limits, Economics, and Backward Dynamics.

Judy Kennedy (2008)

RACSAM

Similarity:

We survey recent papers on the problem of backward dynamics in economics, providing along the way a glimpse at the economics perspective, a discussion of the economic models and mathematical tools involved, and a list of applicable literature in both mathematics and economics.

Uncountable ω-limit sets with isolated points

Chris Good, Brian E. Raines, Rolf Suabedissen (2009)

Fundamenta Mathematicae

Similarity:

We give two examples of tent maps with uncountable (as it happens, post-critical) ω-limit sets, which have isolated points, with interesting structures. Such ω-limit sets must be of the form C ∪ R, where C is a Cantor set and R is a scattered set. Firstly, it is known that there is a restriction on the topological structure of countable ω-limit sets for finite-to-one maps satisfying at least some weak form of expansivity. We show that this restriction does not hold if the ω-limit set...

RUC systems in rearrangement invariant spaces

P. G. Dodds, E. M. Semenov, F. A. Sukochev (2002)

Studia Mathematica

Similarity:

We present necessary and sufficient conditions for a rearrangement invariant function space to have a complete orthonormal uniformly bounded RUC system.

Sequences of independent identically distributed functions in rearrangement invariant spaces

S. V. Astashkin, F. A. Sukochev (2008)

Banach Center Publications

Similarity:

A new set of sufficient conditions under which every sequence of independent identically distributed functions from a rearrangement invariant (r.i.) space on [0,1] spans there a Hilbertian subspace are given. We apply these results to resolve open problems of N. L. Carothers and S. L. Dilworth, and of M. Sh. Braverman, concerning such sequences in concrete r.i. spaces.

Invariant sets and Knaster-Tarski principle

Krzysztof Leśniak (2012)

Open Mathematics

Similarity:

Our aim is to point out the applicability of the Knaster-Tarski fixed point principle to the problem of existence of invariant sets in discrete-time (multivalued) semi-dynamical systems, especially iterated function systems.