Invariant sets and Knaster-Tarski principle

Krzysztof Leśniak

Open Mathematics (2012)

  • Volume: 10, Issue: 6, page 2077-2087
  • ISSN: 2391-5455

Abstract

top
Our aim is to point out the applicability of the Knaster-Tarski fixed point principle to the problem of existence of invariant sets in discrete-time (multivalued) semi-dynamical systems, especially iterated function systems.

How to cite

top

Krzysztof Leśniak. "Invariant sets and Knaster-Tarski principle." Open Mathematics 10.6 (2012): 2077-2087. <http://eudml.org/doc/268965>.

@article{KrzysztofLeśniak2012,
abstract = {Our aim is to point out the applicability of the Knaster-Tarski fixed point principle to the problem of existence of invariant sets in discrete-time (multivalued) semi-dynamical systems, especially iterated function systems.},
author = {Krzysztof Leśniak},
journal = {Open Mathematics},
keywords = {Invariant in closure set; Barnsley-Hutchinson operator; Fixed point; Monotone map; Measure of noncompactness; Strongly condensing multifunction; invariant in closure set; fixed point; monotone map; measure of noncompactness; strongly condensing multifunction},
language = {eng},
number = {6},
pages = {2077-2087},
title = {Invariant sets and Knaster-Tarski principle},
url = {http://eudml.org/doc/268965},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Krzysztof Leśniak
TI - Invariant sets and Knaster-Tarski principle
JO - Open Mathematics
PY - 2012
VL - 10
IS - 6
SP - 2077
EP - 2087
AB - Our aim is to point out the applicability of the Knaster-Tarski fixed point principle to the problem of existence of invariant sets in discrete-time (multivalued) semi-dynamical systems, especially iterated function systems.
LA - eng
KW - Invariant in closure set; Barnsley-Hutchinson operator; Fixed point; Monotone map; Measure of noncompactness; Strongly condensing multifunction; invariant in closure set; fixed point; monotone map; measure of noncompactness; strongly condensing multifunction
UR - http://eudml.org/doc/268965
ER -

References

top
  1. [1] Abian S., Brown A.B., A theorem on partially ordered sets, with applications to fixed point theorems, Canad. J. Math., 1961, 13, 78–82 http://dx.doi.org/10.4153/CJM-1961-007-5[Crossref] Zbl0098.25502
  2. [2] Akhmerov R.R., Kamenskiĭ M.I., Potapov A.S., Rodkina A.E., Sadovskiĭ B.N., Measures of Noncompactness and Condensing Operators, Oper. Theory Adv. Appl., 55, Birkhäuser, Basel, 1992 
  3. [3] Akin E., The General Topology of Dynamical Systems, Grad. Stud. Math., 1, American Mathematical Society, Providence, 1993 
  4. [4] Andres J., Fišer J., Metric and topological multivalued fractals, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2004, 14(4), 1277–1289 http://dx.doi.org/10.1142/S021812740400979X[Crossref] 
  5. [5] Andres J., Fišer J., Gabor G., Leśniak K., Multivalued fractals, Chaos Solitons Fractals, 2005, 24(3), 665–700 http://dx.doi.org/10.1016/j.chaos.2004.09.029[Crossref] Zbl1077.28002
  6. [6] Andres J., Górniewicz L., Topological Fixed Point Principles for Boundary Value Problems, Topol. Fixed Point Theory Appl., 1, Kluwer, Dordrecht, 2003 
  7. [7] Andres J., Väth M., Calculation of Lefschetz and Nielsen numbers in hyperspaces for fractals and dynamical systems, Proc. Amer. Math. Soc., 2007, 135(2), 479–487 http://dx.doi.org/10.1090/S0002-9939-06-08505-4[Crossref] Zbl1173.55001
  8. [8] Ayerbe Toledano J.M., Domínguez Benavides T., López Acedo G., Measures of Noncompactness in Metric Fixed Point Theory, Oper. Theory Adv. Appl., 99, Birkhäuser, Basel, 1997 http://dx.doi.org/10.1007/978-3-0348-8920-9[Crossref] Zbl0885.47021
  9. [9] Banaś J., Goebel K., Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math., 60, Marcel Dekker, New York, 1980 Zbl0441.47056
  10. [10] Bandt Ch., On the metric structure of hyperspaces with Hausdorff metric, Math. Nachr., 1986, 129, 175–183 http://dx.doi.org/10.1002/mana.19861290116[Crossref] Zbl0609.54008
  11. [11] Barbashin E.A., On the theory of general dynamical systems, Učenye Zap. Moskov. Gos. Univ. Matematika, 1948, 135(2), 110–133 (in Russian) 
  12. [12] Barnsley M.F., Demko S., Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A, 1985, 399(1817), 243–275 http://dx.doi.org/10.1098/rspa.1985.0057[Crossref] Zbl0588.28002
  13. [13] Barnsley M.F., Vince A., Real projective iterated function systems, J. Geom. Anal. (in press), DOI: 10.1007/s12220-011-9232-x [Crossref] Zbl1256.28002
  14. [14] Beer G., Topologies on Closed and Closed Convex Sets, Math. Appl., 268, Kluwer, Dordrecht, 1993 Zbl0792.54008
  15. [15] Birkhoff G.D., Dynamical Systems, American Mathematical Society, New York, 1927 Zbl53.0732.01
  16. [16] Bloom S.L., Ésik Z., The equational logic of fixed points, Theoret. Comput. Sci., 1997, 179(1–2), 1–60 http://dx.doi.org/10.1016/S0304-3975(96)00248-4[Crossref] Zbl0920.03067
  17. [17] Bogdewicz A., Herburt I., Moszyńska M., Quotient metrics with applications in convex geometry, Beitr. Algebra Geom. (in press), DOI: 10.1007/s13366-011-0082-2 [Crossref] Zbl1260.54043
  18. [18] Carl S., Heikkilä S., Fixed Point Theory in Ordered Sets and Applications, Springer, New York, 2011 http://dx.doi.org/10.1007/978-1-4419-7585-0[Crossref] Zbl1209.47001
  19. [19] Chueshov I.D., Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Univ. Lektsii Sovrem. Mat., AKTA, Kharkov, 1999 (in Russian) Zbl1100.37046
  20. [20] Conley C., Isolated Invariant Sets and the Morse Index, CBMS Regional Conf. Ser. in Math., 38, American Mathematical Society, Providence, 1978 
  21. [21] Conley C., Easton R., Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc., 1971, 158, 35–61 http://dx.doi.org/10.1090/S0002-9947-1971-0279830-1[Crossref] Zbl0223.58011
  22. [22] Conti G., Obukhovskiĭ V., Zecca P., On the topological structure of the solution set for a semilinear functionaldifferential inclusion in a Banach space, In: Topology in Nonlinear Analysis, Warsaw, September 5–18 and October 10–15, 1994, Banach Center Publ., 35, Polish Academy of Sciences, Institute of Mathematics, Warsaw, 1996, 159–169 
  23. [23] De Blasi F.S., Georgiev P.Gr., Hukuhara’s topological degree for non compact valued multifunctions, Publ. Res. Inst. Math. Sci., 2003, 39(1), 183–203 http://dx.doi.org/10.2977/prims/1145476153[Crossref] Zbl1048.47045
  24. [24] De Blasi F.S., Myjak J., A remark on the definition of topological degree for set-valued mappings, J. Math. Anal. Appl., 1983, 92(2), 445–451 http://dx.doi.org/10.1016/0022-247X(83)90261-5[Crossref] 
  25. [25] Edalat A., Dynamical systems, measures and fractals via domain theory, Inform. and Comput., 1995, 120(1), 32–48 http://dx.doi.org/10.1006/inco.1995.1096[Crossref] 
  26. [26] Edwards R.E., Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965 Zbl0182.16101
  27. [27] Elton J.H., An ergodic theorem for iterated maps, Ergodic Theory Dynam. Systems, 1987, 7(4), 481–488 http://dx.doi.org/10.1017/S0143385700004168[Crossref] Zbl0621.60039
  28. [28] Fečkan M., Topological Degree Approach to Bifurcation Problems, Topol. Fixed Point Theory Appl., 5, Springer, New Yok, 2008 
  29. [29] Fleiner T., A fixed-point approach to stable matchings and some applications, Math. Oper. Res., 2003, 28(1), 103–126 http://dx.doi.org/10.1287/moor.28.1.103.14256[Crossref] 
  30. [30] Góebel K., Kirk W.A., Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., 28, Cambridge University Press, Cambridge, 1990 
  31. [31] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, 2nd ed., Topol. Fixed Point Theory Appl., 4, Springer, Dordrecht, 2006 Zbl1107.55001
  32. [32] Granas A., Dugundji J., Fixed Point Theory, Springer Monogr. Math., Springer, New York, 2003 Zbl1025.47002
  33. [33] Hale J.K., Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr., 25, American Mathematical Society, Providence, 1988 Zbl0642.58013
  34. [34] Hata M., On some properties of set-dynamical systems, Proc. Japan Acad. Ser. A Math. Sci., 1985, 61(4), 99–102 http://dx.doi.org/10.3792/pjaa.61.99[Crossref] 
  35. [35] Hayashi S., Self-similar sets as Tarski’s fixed points, Publ. Res. Inst. Math. Sci., 1985, 21(5), 1059–1066 http://dx.doi.org/10.2977/prims/1195178796[Crossref] Zbl0618.54030
  36. [36] Heikkilä S., On fixed points through a generalized iteration method with applications to differential and integral equations involving discontinuities, Nonlinear Anal., 1990, 14(5), 413–426 http://dx.doi.org/10.1016/0362-546X(90)90082-R[Crossref] 
  37. [37] Heikkilä S., Fixed point results and their applications to Markov processes, Fixed Point Theory Appl., 2005, 3, 307–320 Zbl1108.54025
  38. [38] Hitzler P., Seda A.K., Generalized metrics and uniquely determined logic programs, Theoret. Comput. Sci., 2003, 305(1–3), 187–219 http://dx.doi.org/10.1016/S0304-3975(02)00709-0[Crossref] Zbl1071.68018
  39. [39] Hu S., Papageorgiou N.S., Handbook of Multivalued Analysis I, Math. Appl., 419, Kluwer, Dordrecht, 1997 Zbl0887.47001
  40. [40] Hutchinson J.E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30(5), 713–747 http://dx.doi.org/10.1512/iumj.1981.30.30055[Crossref] 
  41. [41] Illanes A., Nadler S.B. Jr., Hyperspaces, Monogr. Textbooks Pure Appl. Math., 216, Marcel Dekker, New York, 1999 
  42. [42] Iosifescu M., Iterated function systems. A critical survey, Math. Rep. (Bucur.), 2009, 11(61)(3), 181–229 Zbl1212.60056
  43. [43] Jachymski J., Order-theoretic aspects of metric fixed point theory, In: Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, 613–641 Zbl1027.54065
  44. [44] Jachymski J., Gajek L., Pokarowski P., The Tarski-Kantorovitch principle and the theory of iterated function systems, Bull. Austral. Math. Soc., 2000, 61(2), 247–261 http://dx.doi.org/10.1017/S0004972700022243[Crossref] Zbl0952.54029
  45. [45] Joseph J.E., Multifunctions and graphs, Pacific J. Math., 1978, 79(2), 509–529 Zbl0405.54013
  46. [46] Kantorovitch L., The method of successive approximation for functional equations, Acta Math., 1939, 71, 63–97 http://dx.doi.org/10.1007/BF02547750[Crossref] Zbl65.0520.02
  47. [47] Kieninger B., Iterated Function Systems on Compact Hausdorff Spaces, PhD thesis, Universität Augsburg, 2002 Zbl1019.54020
  48. [48] Knaster B., Un théorème sur les fonctions d’ensembles, Annales de la Société Polonaise de Mathématique, 1928, 6, 133–134 Zbl54.0091.04
  49. [49] Krasnosel’skii M.A., Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964 
  50. [50] Kuratowski C., Topologie I, Monogr. Mat., 20, PWN, Warsaw, 1958 
  51. [51] Lasota A., Myjak J., Attractors of multifunctions, Bull. Polish Acad. Sci. Math., 2000, 48(3), 319–334 Zbl0962.28004
  52. [52] Leśniak K., Extremal sets as fractals, Nonlinear Anal. Forum, 2002, 7(2), 199–208 Zbl1161.54301
  53. [53] Leśniak K., Stability and invariance of multivalued iterated function systems, Math. Slovaca, 2003, 53(4), 393–405 Zbl1072.54030
  54. [54] Leśniak K., Infinite iterated function systems: a multivalued approach, Bull. Pol. Acad. Sci. Math., 2004, 52(1), 1–8 http://dx.doi.org/10.4064/ba52-1-1[Crossref] Zbl1108.47048
  55. [55] Leśniak K., Fixed points of the Barnsley-Hutchinson operators induced by hyper-condensing maps, Matematiche (Catania), 2005, 60(1), 67–80 Zbl1195.54080
  56. [56] Leśniak K., On the Lifshits constant for hyperspaces, Bull. Pol. Acad. Sci. Math., 2007, 55(2), 155–160 http://dx.doi.org/10.4064/ba55-2-6[Crossref] Zbl1124.54002
  57. [57] Leśniak K., Note on the Kuratowski theorem for abstract measures of noncompactness, preprint available at www-users.mat.umk.pl/_much/works/kuratow.ps 
  58. [58] Marchaud A., Sur les champs de demi-droites et les équations différentielles du premier ordre, Bull. Soc. Math. France, 1934, 62, 1–38 Zbl60.0373.09
  59. [59] Mauldin R.D., Urbański M., Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. (3), 1996, 73(1), 105–154 http://dx.doi.org/10.1112/plms/s3-73.1.105[Crossref] Zbl0852.28005
  60. [60] McGehee R., Attractors for closed relations on compact Hausdorff spaces, Indiana Univ. Math. J., 1992, 41(4), 1165–1209 http://dx.doi.org/10.1512/iumj.1992.41.41058[Crossref] Zbl0767.58032
  61. [61] Melnik V.S., Valero J., On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 1998, 6(1), 83–111 http://dx.doi.org/10.1023/A:1008608431399[Crossref] 
  62. [62] Ok E.A., Fixed set theory for closed correspondences with applications to self-similarity and games, Nonlinear Anal., 2004, 56(3), 309–330 http://dx.doi.org/10.1016/j.na.2003.08.001[Crossref] Zbl1068.47065
  63. [63] d’Orey V., Fixed point theorems for correspondences with values in a partially ordered set and extended supermodular games, J. Math. Econom., 1996, 25(3), 345–354 http://dx.doi.org/10.1016/0304-4068(95)00728-8[Crossref] 
  64. [64] Petruşel A., Rus I.A., Dynamics on (P cp(X), H d) generated by a finite family of multi-valued operators on (X, d), Math. Morav., 2001, 5, 103–110 Zbl1011.47043
  65. [65] Ponomarev V.I., On common fixed set for two continuous multivalued selfmappings of bicompactum, Colloq. Math. 1963, 10, 227–231 (in Russian) 
  66. [66] Ran A.C.M., Reurings M.C.B., A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 2004, 132(5), 1435–1443 http://dx.doi.org/10.1090/S0002-9939-03-07220-4[Crossref] Zbl1060.47056
  67. [67] Schröder B.S.W., Algorithms for the fixed point property, Theoret. Comput. Sci., 1999, 217(2), 301–358 http://dx.doi.org/10.1016/S0304-3975(98)00273-4[Crossref] 
  68. [68] Šeda V., On condensing discrete dynamical systems, Math. Bohem., 2000, 125(3), 275–306 Zbl0972.37009
  69. [69] Soto-Andrade J., Varela F.J., Self-reference and fixed points: a discussion and an extension of Lawvere’s theorem, Acta Appl. Math., 1984, 2(1), 1–19 http://dx.doi.org/10.1007/BF01405490[Crossref] Zbl0538.03052
  70. [70] Stenflo Ö., A survey of average contractive iterated function systems, J. Difference Equ. Appl., 2012, 18(8), 1355–1380 http://dx.doi.org/10.1080/10236198.2011.610793[Crossref] Zbl1258.60043
  71. [71] Strother W., Fixed points, fixed sets, and M-retracts, Duke Math. J., 1955, 22(4), 551–556 http://dx.doi.org/10.1215/S0012-7094-55-02261-4[Crossref] Zbl0066.41003
  72. [72] Tarafdar E.U., Chowdhury M.S.R., Topological Methods for Set-Valued Nonlinear Analysis, World Scientific, Hackensack, 2008 http://dx.doi.org/10.1142/6347[Crossref] Zbl1141.47033
  73. [73] Tarski A., A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math., 1955, 5(2), 285–309 Zbl0064.26004
  74. [74] de Vries J., Elements of Topological Dynamics, Math. Appl., 257, Kluwer, Dordrecht, 1993 Zbl0783.54035
  75. [75] Waszkiewicz P., Kostanek M., Reconciliation of elementary order and metric fixpoint theorems (manuscript) 
  76. [76] Wicks K.R., Fractals and Hyperspaces, Lecture Notes in Math., 1492, Springer, Berlin, 1991 
  77. [77] Yamaguchi M., Hata M., Kigami J., Transl. Math. Monogr., 167, Mathematics of Fractals, American Mathematical Society, Providence, 1997 
  78. [78] Zaremba S.C., Sur les équations au paratingent, Bull. Sci. Math., 1936, 60, 139–160 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.