On the maximal exact structure of an additive category
Wolfgang Rump (2011)
Fundamenta Mathematicae
Similarity:
We prove that every additive category has a unique maximal exact structure in the sense of Quillen.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Wolfgang Rump (2011)
Fundamenta Mathematicae
Similarity:
We prove that every additive category has a unique maximal exact structure in the sense of Quillen.
Generalov, A.I., Isametdinov, I.O. (1999)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Temple H. Fay, Keith A. Hardie (1989)
Publicacions Matemàtiques
Similarity:
Andrée Ehresmann, Charles Ehresmann (1978)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Fabricio Benevides, Jonathan Hulgan, Nathan Lemons, Cory Palmer, Ago-Erik Riet, Jeffrey Paul Wheeler (2009)
Acta Arithmetica
Similarity:
Karlheinz Baumgartner (1975)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Stanisław Betley (2001)
Fundamenta Mathematicae
Similarity:
We present a very short way of calculating additively the stable (co)homology of Eilenberg-MacLane spaces K(ℤ/p,n). Our method depends only on homological algebra in appropriate categories of functors.
Antipov, M.A. (2005)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Marco Grandis (1992)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Bernhard Keller (1990)
Manuscripta mathematica
Similarity:
Franjou, Vincent, Pirashvili, Teimuraz (2004)
Documenta Mathematica
Similarity:
Yaroslav Kopylov (2004)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity: