Displaying similar documents to “Ordinal indices and Ramsey dichotomies measuring c₀-content and semibounded completeness”

Decidability and definability results related to the elementary theory of ordinal multiplication

Alexis Bès (2002)

Fundamenta Mathematicae

Similarity:

The elementary theory of ⟨α;×⟩, where α is an ordinal and × denotes ordinal multiplication, is decidable if and only if α < ω ω . Moreover if | r and | l respectively denote the right- and left-hand divisibility relation, we show that Th ω ω ξ ; | r and Th ω ξ ; | l are decidable for every ordinal ξ. Further related definability results are also presented.

A solution to Comfort's question on the countable compactness of powers of a topological group

Artur Hideyuki Tomita (2005)

Fundamenta Mathematicae

Similarity:

In 1990, Comfort asked Question 477 in the survey book “Open Problems in Topology”: Is there, for every (not necessarily infinite) cardinal number α 2 , a topological group G such that G γ is countably compact for all cardinals γ < α, but G α is not countably compact? Hart and van Mill showed in 1991 that α = 2 answers this question affirmatively under M A c o u n t a b l e . Recently, Tomita showed that every finite cardinal answers Comfort’s question in the affirmative, also from M A c o u n t a b l e . However, the question has...

Uncountable cardinals have the same monadic ∀₁¹ positive theory over large sets

Athanassios Tzouvaras (2004)

Fundamenta Mathematicae

Similarity:

We show that uncountable cardinals are indistinguishable by sentences of the monadic second-order language of order of the form (∀X)ϕ(X) and (∃X)ϕ(X), for ϕ positive in X and containing no set-quantifiers, when the set variables range over large (= cofinal) subsets of the cardinals. This strengthens the result of Doner-Mostowski-Tarski [3] that (κ,∈), (λ,∈) are elementarily equivalent when κ, λ are uncountable. It follows that we can consistently postulate that the structures ( 2 κ , [ 2 κ ] > κ , < ) , ( 2 λ , [ 2 λ ] > λ , < ) are...

An Isomorphic Classification of C ( 2 × [ 0 , α ] ) Spaces

Elói Medina Galego (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We present an extension of the classical isomorphic classification of the Banach spaces C([0,α]) of all real continuous functions defined on the nondenumerable intervals of ordinals [0,α]. As an application, we establish the isomorphic classification of the Banach spaces C ( 2 × [ 0 , α ] ) of all real continuous functions defined on the compact spaces 2 × [ 0 , α ] , the topological product of the Cantor cubes 2 with smaller than the first sequential cardinal, and intervals of ordinal numbers [0,α]. Consequently,...

On isomorphism classes of C ( 2 [ 0 , α ] ) spaces

Elói Medina Galego (2009)

Fundamenta Mathematicae

Similarity:

We provide a complete isomorphic classification of the Banach spaces of continuous functions on the compact spaces 2 [ 0 , α ] , the topological sums of Cantor cubes 2 , with smaller than the first sequential cardinal, and intervals of ordinal numbers [0,α]. In particular, we prove that it is relatively consistent with ZFC that the only isomorphism classes of C ( 2 [ 0 , α ] ) spaces with ≥ ℵ₀ and α ≥ ω₁ are the trivial ones. This result leads to some elementary questions on large cardinals.

On ordinals accessible by infinitary languages

Saharon Shelah, Pauli Väisänen, Jouko Väänänen (2005)

Fundamenta Mathematicae

Similarity:

Let λ be an infinite cardinal number. The ordinal number δ(λ) is the least ordinal γ such that if ϕ is any sentence of L λ ω , with a unary predicate D and a binary predicate ≺, and ϕ has a model ℳ with D , a well-ordering of type ≥ γ, then ϕ has a model ℳ ’ where D ' , ' is non-well-ordered. One of the interesting properties of this number is that the Hanf number of L λ ω is exactly δ ( λ ) . It was proved in [BK71] that if ℵ₀ < λ < κ a r e r e g u l a r c a r d i n a l n u m b e r s , t h e n t h e r e i s a f o r c i n g e x t e n s i o n , p r e s e r v i n g c o f i n a l i t i e s , s u c h t h a t i n t h e e x t e n s i o n 2λ = κ a n d δ ( λ ) < λ . W e i m p r o v e t h i s r e s u l t b y p r o v i n g t h e f o l l o w i n g : S u p p o s e < λ < θ κ a r e c a r d i n a l n u m b e r s s u c h t h a t λ < λ = λ ; ∙ cf(θ) ≥ λ⁺ and μ λ < θ whenever μ < θ; ∙ κ λ = κ . Then there...

Interpolation of κ -compactness and PCF

István Juhász, Zoltán Szentmiklóssy (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We call a topological space κ -compact if every subset of size κ has a complete accumulation point in it. Let Φ ( μ , κ , λ ) denote the following statement: μ < κ < λ = cf ( λ ) and there is { S ξ : ξ < λ } [ κ ] μ such that | { ξ : | S ξ A | = μ } | < λ whenever A [ κ ] < κ . We show that if Φ ( μ , κ , λ ) holds and the space X is both μ -compact and λ -compact then X is κ -compact as well. Moreover, from PCF theory we deduce Φ ( cf ( κ ) , κ , κ + ) for every singular cardinal κ . As a corollary we get that a linearly Lindelöf and ω -compact space is uncountably compact, that is κ -compact for all uncountable cardinals...

Ordinal remainders of classical ψ-spaces

Alan Dow, Jerry E. Vaughan (2012)

Fundamenta Mathematicae

Similarity:

Let ω denote the set of natural numbers. We prove: for every mod-finite ascending chain T α : α < λ of infinite subsets of ω, there exists [ ω ] ω , an infinite maximal almost disjoint family (MADF) of infinite subsets of the natural numbers, such that the Stone-Čech remainder βψ∖ψ of the associated ψ-space, ψ = ψ(ω,ℳ ), is homeomorphic to λ + 1 with the order topology. We also prove that for every λ < ⁺, where is the tower number, there exists a mod-finite ascending chain T α : α < λ , hence a ψ-space with...

Initially κ -compact spaces for large κ

Stavros Christodoulou (1999)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

This work presents some cardinal inequalities in which appears the closed pseudo-character, ψ c , of a space. Using one of them — ψ c ( X ) 2 d ( X ) for T 2 spaces — we improve, from T 3 to T 2 spaces, the well-known result that initially κ -compact T 3 spaces are λ -bounded for all cardinals λ such that 2 λ κ . And then, using an idea of A. Dow, we prove that initially κ -compact T 2 spaces are in fact compact for κ = 2 F ( X ) , 2 s ( X ) , 2 t ( X ) , 2 χ ( X ) , 2 ψ c ( X ) or κ = max { τ + , τ < τ } , where τ > t ( p , X ) for all p X .

Locally Σ₁-definable well-orders of H(κ⁺)

Peter Holy, Philipp Lücke (2014)

Fundamenta Mathematicae

Similarity:

Given an uncountable cardinal κ with κ = κ < κ and 2 κ regular, we show that there is a forcing that preserves cofinalities less than or equal to 2 κ and forces the existence of a well-order of H(κ⁺) that is definable over ⟨H(κ⁺),∈⟩ by a Σ₁-formula with parameters. This shows that, in contrast to the case "κ = ω", the existence of a locally definable well-order of H(κ⁺) of low complexity is consistent with failures of the GCH at κ. We also show that the forcing mentioned above introduces a Bernstein...

An observation on spaces with a zeroset diagonal

Wei-Feng Xuan (2020)

Mathematica Bohemica

Similarity:

We say that a space X has the discrete countable chain condition (DCCC for short) if every discrete family of nonempty open subsets of X is countable. A space X has a zeroset diagonal if there is a continuous mapping f : X 2 [ 0 , 1 ] with Δ X = f - 1 ( 0 ) , where Δ X = { ( x , x ) : x X } . In this paper, we prove that every first countable DCCC space with a zeroset diagonal has cardinality at most 𝔠 .

Counting models of set theory

Ali Enayat (2002)

Fundamenta Mathematicae

Similarity:

Let T denote a completion of ZF. We are interested in the number μ(T) of isomorphism types of countable well-founded models of T. Given any countable order type τ, we are also interested in the number μ(T,τ) of isomorphism types of countable models of T whose ordinals have order type τ. We prove: (1) Suppose ZFC has an uncountable well-founded model and κ ω , , 2 . There is some completion T of ZF such that μ(T) = κ. (2) If α <ω₁ and μ(T,α) > ℵ₀, then μ ( T , α ) = 2 . (3) If α < ω₁ and T ⊢ V ≠ OD,...

On the Set-Theoretic Strength of Countable Compactness of the Tychonoff Product 2

Eleftherios Tachtsis (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We work in ZF set theory (i.e., Zermelo-Fraenkel set theory minus the Axiom of Choice AC) and show the following: 1. The Axiom of Choice for well-ordered families of non-empty sets ( A C W O ) does not imply “the Tychonoff product 2 , where 2 is the discrete space 0,1, is countably compact” in ZF. This answers in the negative the following question from Keremedis, Felouzis, and Tachtsis [Bull. Polish Acad. Sci. Math. 55 (2007)]: Does the Countable Axiom of Choice for families of non-empty sets...