Displaying similar documents to “Stabilizers of closed sets in the Urysohn space”

Topology of the isometry group of the Urysohn space

Julien Melleray (2010)

Fundamenta Mathematicae

Similarity:

Using classical results of infinite-dimensional geometry, we show that the isometry group of the Urysohn space, endowed with its usual Polish group topology, is homeomorphic to the separable Hilbert space ℓ²(ℕ). The proof is based on a lemma about extensions of metric spaces by finite metric spaces, which we also use to investigate (answering a question of I. Goldbring) the relationship, when A,B are finite subsets of the Urysohn space, between the group of isometries fixing A pointwise,...

A Universal Separable Diversity

David Bryant, André Nies, Paul Tupper (2017)

Analysis and Geometry in Metric Spaces

Similarity:

The Urysohn space is a separable complete metric space with two fundamental properties: (a) universality: every separable metric space can be isometrically embedded in it; (b) ultrahomogeneity: every finite isometry between two finite subspaces can be extended to an auto-isometry of the whole space. The Urysohn space is uniquely determined up to isometry within separable metric spaces by these two properties. We introduce an analogue of the Urysohn space for diversities, a recently developed...

Functor of extension of Λ -isometric maps between central subsets of the unbounded Urysohn universal space

Piotr Niemiec (2010)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The aim of the paper is to prove that in the unbounded Urysohn universal space 𝕌 there is a functor of extension of Λ -isometric maps (i.e. dilations) between central subsets of 𝕌 to Λ -isometric maps acting on the whole space. Special properties of the functor are established. It is also shown that the multiplicative group { 0 } acts continuously on 𝕌 by Λ -isometries.

Linearly rigid metric spaces and the embedding problem

J. Melleray, F. V. Petrov, A. M. Vershik (2008)

Fundamenta Mathematicae

Similarity:

We consider the problem of isometric embedding of metric spaces into Banach spaces, and introduce and study the remarkable class of so-called linearly rigid metric spaces: these are the spaces that admit a unique, up to isometry, linearly dense isometric embedding into a Banach space. The first nontrivial example of such a space was given by R. Holmes; he proved that the universal Urysohn space has this property. We give a criterion of linear rigidity of a metric space, which allows...

A bilinear version of Holsztyński's theorem on isometries of C(X)-spaces

Antonio Moreno Galindo, Ángel Rodríguez Palacios (2005)

Studia Mathematica

Similarity:

We prove that, for a compact metric space X not reduced to a point, the existence of a bilinear mapping ⋄: C(X) × C(X) → C(X) satisfying ||f⋄g|| = ||f|| ||g|| for all f,g ∈ C(X) is equivalent to the uncountability of X. This is derived from a bilinear version of Holsztyński's theorem [3] on isometries of C(X)-spaces, which is also proved in the paper.