Functor of extension of Λ -isometric maps between central subsets of the unbounded Urysohn universal space

Piotr Niemiec

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 3, page 541-549
  • ISSN: 0010-2628

Abstract

top
The aim of the paper is to prove that in the unbounded Urysohn universal space 𝕌 there is a functor of extension of Λ -isometric maps (i.e. dilations) between central subsets of 𝕌 to Λ -isometric maps acting on the whole space. Special properties of the functor are established. It is also shown that the multiplicative group { 0 } acts continuously on 𝕌 by Λ -isometries.

How to cite

top

Niemiec, Piotr. "Functor of extension of $\Lambda $-isometric maps between central subsets of the unbounded Urysohn universal space." Commentationes Mathematicae Universitatis Carolinae 51.3 (2010): 541-549. <http://eudml.org/doc/38149>.

@article{Niemiec2010,
abstract = {The aim of the paper is to prove that in the unbounded Urysohn universal space $\mathbb \{U\}$ there is a functor of extension of $\Lambda $-isometric maps (i.e. dilations) between central subsets of $\mathbb \{U\}$ to $\Lambda $-isometric maps acting on the whole space. Special properties of the functor are established. It is also shown that the multiplicative group $\mathbb \{R\} \setminus \lbrace 0\rbrace $ acts continuously on $\mathbb \{U\}$ by $\Lambda $-isometries.},
author = {Niemiec, Piotr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Urysohn's universal space; ultrahomogeneous spaces; functor; extensions of isometries; Urysohn's universal space; ultrahomogeneous space; functor; extension of isometries},
language = {eng},
number = {3},
pages = {541-549},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Functor of extension of $\Lambda $-isometric maps between central subsets of the unbounded Urysohn universal space},
url = {http://eudml.org/doc/38149},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Niemiec, Piotr
TI - Functor of extension of $\Lambda $-isometric maps between central subsets of the unbounded Urysohn universal space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 3
SP - 541
EP - 549
AB - The aim of the paper is to prove that in the unbounded Urysohn universal space $\mathbb {U}$ there is a functor of extension of $\Lambda $-isometric maps (i.e. dilations) between central subsets of $\mathbb {U}$ to $\Lambda $-isometric maps acting on the whole space. Special properties of the functor are established. It is also shown that the multiplicative group $\mathbb {R} \setminus \lbrace 0\rbrace $ acts continuously on $\mathbb {U}$ by $\Lambda $-isometries.
LA - eng
KW - Urysohn's universal space; ultrahomogeneous spaces; functor; extensions of isometries; Urysohn's universal space; ultrahomogeneous space; functor; extension of isometries
UR - http://eudml.org/doc/38149
ER -

References

top
  1. Cameron P.J., Vershik A.M., 10.1016/j.apal.2005.08.001, Ann. Pure Appl. Logic 143 (2006), no. 1–3, 70–78. MR2258622DOI10.1016/j.apal.2005.08.001
  2. Gao S., Kechris A.S., On the classification of Polish metric spaces up to isometry, Mem. Amer. Math. Soc. 161 (2003), viii+78 pp. Zbl1012.54038MR1950332
  3. Holmes M.R., The universal separable metric space of Urysohn and isometric embeddings thereof in Banach spaces, Fund. Math. 140 (1992), 199–223. Zbl0772.54022MR1173763
  4. Holmes M.R., 10.1016/j.topol.2008.03.013, Topology Appl. 155 (2008), no. 14, 1479–1482. Zbl1149.54007MR2435143DOI10.1016/j.topol.2008.03.013
  5. Huhunaišvili G.E., On a property of Urysohn's universal metric space, (Russian), Dokl. Akad. Nauk. USSR (N.S.) 101 (1955), 332–333. 
  6. Katětov M., On universal metric spaces, in General Topology and its Relations to Modern Analysis and Algebra VI, Proceedings of the Sixth Prague Topological Symposium 1986, Z. Frolík (ed.), Helderman Verlag, Berlin, 1988, pp. 323–330. MR0952617
  7. Melleray J., 10.1016/j.topol.2006.05.005, Topology Appl. 154 (2007), 384–403. Zbl1113.54017MR2278687DOI10.1016/j.topol.2006.05.005
  8. Melleray J., 10.1016/j.topol.2007.04.029, Topology Appl. 155 (2008), no. 14, 1531–1560. MR2435148DOI10.1016/j.topol.2007.04.029
  9. Niemiec P., Central subsets of Urysohn universal spaces, Comment. Math. Univ. Carolin. 50 (2009), 445–461. MR2573417
  10. Niemiec P., Functor of extension of contractions on Urysohn universal spaces, Appl. Categ. Struct., doi:10.1007/s10485-009-9218-z. 
  11. Niemiec P., Functor of continuation in Hilbert cube and Hilbert space, to appear. 
  12. Pestov V., Forty-plus annotated questions about large topological groups, in Open Problems in Topology II (Elliot Pearl, ed.), Elsevier B.V., Amsterdam, 2007, pp. 439–450. 
  13. Urysohn P.S., Sur un espace métrique universel, C.R. Acad. Sci. Paris 180 (1925), 803–806. 
  14. Urysohn P.S., Sur un espace métrique universel, Bull. Sci. Math. 51 (1927), 43–64, 74–96. 
  15. Uspenskij V.V., On the group of isometries of the Urysohn universal metric space, Comment. Math. Univ. Carolin. 31 (1990), no. 1, 181–182. Zbl0699.54011MR1056185
  16. Uspenskij V.V., 10.1016/j.topol.2003.09.008, Topology Appl. 139 (2004), no. 1–3, 145–149. Zbl1062.54036MR2051102DOI10.1016/j.topol.2003.09.008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.