Functor of extension of -isometric maps between central subsets of the unbounded Urysohn universal space
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 3, page 541-549
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topNiemiec, Piotr. "Functor of extension of $\Lambda $-isometric maps between central subsets of the unbounded Urysohn universal space." Commentationes Mathematicae Universitatis Carolinae 51.3 (2010): 541-549. <http://eudml.org/doc/38149>.
@article{Niemiec2010,
abstract = {The aim of the paper is to prove that in the unbounded Urysohn universal space $\mathbb \{U\}$ there is a functor of extension of $\Lambda $-isometric maps (i.e. dilations) between central subsets of $\mathbb \{U\}$ to $\Lambda $-isometric maps acting on the whole space. Special properties of the functor are established. It is also shown that the multiplicative group $\mathbb \{R\} \setminus \lbrace 0\rbrace $ acts continuously on $\mathbb \{U\}$ by $\Lambda $-isometries.},
author = {Niemiec, Piotr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Urysohn's universal space; ultrahomogeneous spaces; functor; extensions of isometries; Urysohn's universal space; ultrahomogeneous space; functor; extension of isometries},
language = {eng},
number = {3},
pages = {541-549},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Functor of extension of $\Lambda $-isometric maps between central subsets of the unbounded Urysohn universal space},
url = {http://eudml.org/doc/38149},
volume = {51},
year = {2010},
}
TY - JOUR
AU - Niemiec, Piotr
TI - Functor of extension of $\Lambda $-isometric maps between central subsets of the unbounded Urysohn universal space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 3
SP - 541
EP - 549
AB - The aim of the paper is to prove that in the unbounded Urysohn universal space $\mathbb {U}$ there is a functor of extension of $\Lambda $-isometric maps (i.e. dilations) between central subsets of $\mathbb {U}$ to $\Lambda $-isometric maps acting on the whole space. Special properties of the functor are established. It is also shown that the multiplicative group $\mathbb {R} \setminus \lbrace 0\rbrace $ acts continuously on $\mathbb {U}$ by $\Lambda $-isometries.
LA - eng
KW - Urysohn's universal space; ultrahomogeneous spaces; functor; extensions of isometries; Urysohn's universal space; ultrahomogeneous space; functor; extension of isometries
UR - http://eudml.org/doc/38149
ER -
References
top- Cameron P.J., Vershik A.M., 10.1016/j.apal.2005.08.001, Ann. Pure Appl. Logic 143 (2006), no. 1–3, 70–78. MR2258622DOI10.1016/j.apal.2005.08.001
- Gao S., Kechris A.S., On the classification of Polish metric spaces up to isometry, Mem. Amer. Math. Soc. 161 (2003), viii+78 pp. Zbl1012.54038MR1950332
- Holmes M.R., The universal separable metric space of Urysohn and isometric embeddings thereof in Banach spaces, Fund. Math. 140 (1992), 199–223. Zbl0772.54022MR1173763
- Holmes M.R., 10.1016/j.topol.2008.03.013, Topology Appl. 155 (2008), no. 14, 1479–1482. Zbl1149.54007MR2435143DOI10.1016/j.topol.2008.03.013
- Huhunaišvili G.E., On a property of Urysohn's universal metric space, (Russian), Dokl. Akad. Nauk. USSR (N.S.) 101 (1955), 332–333.
- Katětov M., On universal metric spaces, in General Topology and its Relations to Modern Analysis and Algebra VI, Proceedings of the Sixth Prague Topological Symposium 1986, Z. Frolík (ed.), Helderman Verlag, Berlin, 1988, pp. 323–330. MR0952617
- Melleray J., 10.1016/j.topol.2006.05.005, Topology Appl. 154 (2007), 384–403. Zbl1113.54017MR2278687DOI10.1016/j.topol.2006.05.005
- Melleray J., 10.1016/j.topol.2007.04.029, Topology Appl. 155 (2008), no. 14, 1531–1560. MR2435148DOI10.1016/j.topol.2007.04.029
- Niemiec P., Central subsets of Urysohn universal spaces, Comment. Math. Univ. Carolin. 50 (2009), 445–461. MR2573417
- Niemiec P., Functor of extension of contractions on Urysohn universal spaces, Appl. Categ. Struct., doi:10.1007/s10485-009-9218-z.
- Niemiec P., Functor of continuation in Hilbert cube and Hilbert space, to appear.
- Pestov V., Forty-plus annotated questions about large topological groups, in Open Problems in Topology II (Elliot Pearl, ed.), Elsevier B.V., Amsterdam, 2007, pp. 439–450.
- Urysohn P.S., Sur un espace métrique universel, C.R. Acad. Sci. Paris 180 (1925), 803–806.
- Urysohn P.S., Sur un espace métrique universel, Bull. Sci. Math. 51 (1927), 43–64, 74–96.
- Uspenskij V.V., On the group of isometries of the Urysohn universal metric space, Comment. Math. Univ. Carolin. 31 (1990), no. 1, 181–182. Zbl0699.54011MR1056185
- Uspenskij V.V., 10.1016/j.topol.2003.09.008, Topology Appl. 139 (2004), no. 1–3, 145–149. Zbl1062.54036MR2051102DOI10.1016/j.topol.2003.09.008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.