Displaying similar documents to “An infinite torus braid yields a categorified Jones-Wenzl projector”

Khovanov homology, its definitions and ramifications

Oleg Viro (2004)

Fundamenta Mathematicae

Similarity:

Mikhail Khovanov defined, for a diagram of an oriented classical link, a collection of groups labelled by pairs of integers. These groups were constructed as the homology groups of certain chain complexes. The Euler characteristics of these complexes are the coefficients of the Jones polynomial of the link. The original construction is overloaded with algebraic details. Most of the specialists use adaptations of it stripped off the details. The goal of this paper is to overview these...

Introduction to the basics of Heegaard Floer homology

Bijan Sahamie (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

This paper provides an introduction to the basics of Heegaard Floer homology with some emphasis on the hat theory and to the contact geometric invariants in the theory. The exposition is designed to be comprehensible to people without any prior knowledge of the subject.

A 2-category of chronological cobordisms and odd Khovanov homology

Krzysztof K. Putyra (2014)

Banach Center Publications

Similarity:

We create a framework for odd Khovanov homology in the spirit of Bar-Natan's construction for the ordinary Khovanov homology. Namely, we express the cube of resolutions of a link diagram as a diagram in a certain 2-category of chronological cobordisms and show that it is 2-commutative: the composition of 2-morphisms along any 3-dimensional subcube is trivial. This allows us to create a chain complex whose homotopy type modulo certain relations is a link invariant. Both the original and...

Transverse Homology Groups

S. Dragotti, G. Magro, L. Parlato (2006)

Bollettino dell'Unione Matematica Italiana

Similarity:

We give, here, a geometric treatment of intersection homology theory.

A colored 𝔰𝔩(N) homology for links in S³

Hao Wu

Similarity:

Fix an integer N ≥ 2. To each diagram of a link colored by 1,...,N we associate a chain complex of graded matrix factorizations. We prove that the homotopy type of this chain complex is invariant under Reidemeister moves. When every component of the link is colored by 1, this chain complex is isomorphic to the chain complex defined by Khovanov and Rozansky. The homology of this chain complex decategorifies to the Reshetikhin-Turaev 𝔰𝔩(N) polynomial of links colored by exterior powers...

Khovanov-Rozansky homology for embedded graphs

Emmanuel Wagner (2011)

Fundamenta Mathematicae

Similarity:

For any positive integer n, Khovanov and Rozansky constructed a bigraded link homology from which you can recover the 𝔰𝔩ₙ link polynomial invariants. We generalize the Khovanov-Rozansky construction in the case of finite 4-valent graphs embedded in a ball B³ ⊂ ℝ³. More precisely, we prove that the homology associated to a diagram of a 4-valent graph embedded in B³ ⊂ ℝ³ is invariant under the graph moves introduced by Kauffman.