Remarks and examples concerning unordered Baire-like and ultrabarrelled spaces
P. Dierolf, S. Dierolf, L. Drewnowski (1978)
Colloquium Mathematicae
Similarity:
P. Dierolf, S. Dierolf, L. Drewnowski (1978)
Colloquium Mathematicae
Similarity:
J. Mioduszewski (1971)
Colloquium Mathematicae
Similarity:
E. Torrance (1938)
Fundamenta Mathematicae
Similarity:
Hejduk, Jacek (2015-11-10T11:42:31Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
R. C. Haworth, R. A McCoy
Similarity:
CONTENTSIntroduction............................................................................................................ 5I. Basic properties of Baire spaces................................................................... 61. Nowhere dense sets............................................................................................... 62. First and second category sets............................................................................. 83. Baire spaces................................................................................................................
Pandelis Dodos (2003)
Colloquium Mathematicae
Similarity:
Various ordinal ranks for Baire-1 real-valued functions, which have been used in the literature, are adapted to provide ranks for Baire-1 multifunctions. A new rank is also introduced which, roughly speaking, gives an estimate of how far a Baire-1 multifunction is from being upper semicontinuous.
Jerzy Kąkol (1986)
Mathematica Slovaca
Similarity:
Miller, Harry I. (1981)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
W. Fleissner, K. Kunen (1978)
Fundamenta Mathematicae
Similarity:
Jerzy Kakol (2000)
Revista Matemática Complutense
Similarity:
We characterize Baire-like spaces C(X,E) of continuous functions defined on a locally compact and Hewitt space X into a locally convex space E endowed with the compact-open topology.
Ryszard Frankiewicz, Kenneth Kunen (1987)
Fundamenta Mathematicae
Similarity:
Zbigniew Grande (2009)
Colloquium Mathematicae
Similarity:
Let I ⊂ ℝ be an open interval and let A ⊂ I be any set. Every Baire 1 function f: I → ℝ coincides on A with a function g: I → ℝ which is simultaneously approximately continuous and quasicontinuous if and only if the set A is nowhere dense and of Lebesgue measure zero.