The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Ideal limits of sequences of continuous functions”

On spaces with the ideal convergence property

Jakub Jasinski, Ireneusz Recław (2008)

Colloquium Mathematicae

Similarity:

Let I ⊆ P(ω) be an ideal. We continue our investigation of the class of spaces with the I-ideal convergence property, denoted (I). We show that if I is an analytic, non-countably generated P-ideal then (I) ⊆ s₀. If in addition I is non-pathological and not isomorphic to I b , then (I) spaces have measure zero. We also present a characterization of the (I) spaces using clopen covers.

A characterization of the meager ideal

Piotr Zakrzewski (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We give a classical proof of the theorem stating that the σ -ideal of meager sets is the unique σ -ideal on a Polish group, generated by closed sets which is invariant under translations and ergodic.

Fixed-place ideals in commutative rings

Ali Rezaei Aliabad, Mehdi Badie (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let I be a semi-prime ideal. Then P Min ( I ) is called irredundant with respect to I if I P P Min ( I ) P . If I is the intersection of all irredundant ideals with respect to I , it is called a fixed-place ideal. If there are no irredundant ideals with respect to I , it is called an anti fixed-place ideal. We show that each semi-prime ideal has a unique representation as an intersection of a fixed-place ideal and an anti fixed-place ideal. We say the point p β X is a fixed-place point if O p ( X ) is a fixed-place ideal. In...

The ideal (a) is not G δ generated

Marta Frankowska, Andrzej Nowik (2011)

Colloquium Mathematicae

Similarity:

We prove that the ideal (a) defined by the density topology is not G δ generated. This answers a question of Z. Grande and E. Strońska.

On nonmeasurable images

Robert Rałowski, Szymon Żeberski (2010)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , 𝕀 ) be a Polish ideal space and let T be any set. We show that under some conditions on a relation R T 2 × X it is possible to find a set A T such that R ( A 2 ) is completely 𝕀 -nonmeasurable, i.e, it is 𝕀 -nonmeasurable in every positive Borel set. We also obtain such a set A T simultaneously for continuum many relations ( R α ) α < 2 ω . Our results generalize those from the papers of K. Ciesielski, H. Fejzić, C. Freiling and M. Kysiak.

On the ideal convergence of sequences of quasi-continuous functions

Tomasz Natkaniec, Piotr Szuca (2016)

Fundamenta Mathematicae

Similarity:

For any Borel ideal ℐ we describe the ℐ-Baire system generated by the family of quasi-continuous real-valued functions. We characterize the Borel ideals ℐ for which the ideal and ordinary Baire systems coincide.