Displaying similar documents to “A dimensional property of Cartesian product”

The dimension of hyperspaces of non-metrizable continua

Wojciech Stadnicki (2012)

Colloquium Mathematicae

Similarity:

We prove that, for any Hausdorff continuum X, if dim X ≥ 2 then the hyperspace C(X) of subcontinua of X is not a C-space; if dim X = 1 and X is hereditarily indecomposable then either dim C(X) = 2 or C(X) is not a C-space. This generalizes some results known for metric continua.

Fully closed maps and non-metrizable higher-dimensional Anderson-Choquet continua

Jerzy Krzempek (2010)

Colloquium Mathematicae

Similarity:

Fedorchuk's fully closed (continuous) maps and resolutions are applied in constructions of non-metrizable higher-dimensional analogues of Anderson, Choquet, and Cook's rigid continua. Certain theorems on dimension-lowering maps are proved for inductive dimensions and fully closed maps from spaces that need not be hereditarily normal, and some of the examples of continua we construct have non-coinciding dimensions.

Whitney maps-a non-metric case

Janusz Charatonik, Włodzimierz Charatonik (2000)

Colloquium Mathematicae

Similarity:

It is shown that there is no Whitney map on the hyperspace 2 X for non-metrizable Hausdorff compact spaces X. Examples are presented of non-metrizable continua X which admit and ones which do not admit a Whitney map for C(X).