Whitney maps-a non-metric case

Janusz Charatonik; Włodzimierz Charatonik

Colloquium Mathematicae (2000)

  • Volume: 83, Issue: 2, page 305-307
  • ISSN: 0010-1354

Abstract

top
It is shown that there is no Whitney map on the hyperspace 2 X for non-metrizable Hausdorff compact spaces X. Examples are presented of non-metrizable continua X which admit and ones which do not admit a Whitney map for C(X).

How to cite

top

Charatonik, Janusz, and Charatonik, Włodzimierz. "Whitney maps-a non-metric case." Colloquium Mathematicae 83.2 (2000): 305-307. <http://eudml.org/doc/210789>.

@article{Charatonik2000,
abstract = {It is shown that there is no Whitney map on the hyperspace $2^X$ for non-metrizable Hausdorff compact spaces X. Examples are presented of non-metrizable continua X which admit and ones which do not admit a Whitney map for C(X).},
author = {Charatonik, Janusz, Charatonik, Włodzimierz},
journal = {Colloquium Mathematicae},
keywords = {Whitney map; hyperspace; metrizable; continuum; non-metrizable continua},
language = {eng},
number = {2},
pages = {305-307},
title = {Whitney maps-a non-metric case},
url = {http://eudml.org/doc/210789},
volume = {83},
year = {2000},
}

TY - JOUR
AU - Charatonik, Janusz
AU - Charatonik, Włodzimierz
TI - Whitney maps-a non-metric case
JO - Colloquium Mathematicae
PY - 2000
VL - 83
IS - 2
SP - 305
EP - 307
AB - It is shown that there is no Whitney map on the hyperspace $2^X$ for non-metrizable Hausdorff compact spaces X. Examples are presented of non-metrizable continua X which admit and ones which do not admit a Whitney map for C(X).
LA - eng
KW - Whitney map; hyperspace; metrizable; continuum; non-metrizable continua
UR - http://eudml.org/doc/210789
ER -

References

top
  1. [1] R. Engelking, General Topology, Heldermann, Berlin, 1989. 
  2. [2] A. Gutek, A generalization of solenoids, in: Topology (Budapest, 1978), Colloq. Math. Soc. János Bolyai 23, North-Holland, Amsterdam, 1980, 547-554. 
  3. [3] A. Gutek and C. L. Hagopian, A nonmetric indecomposable homogeneous continuum every proper subcontinuum of which is an arc, Proc. Amer. Math. Soc. 86 (1982), 169-172. Zbl0489.54031
  4. [4] A. Illanes and S. B. Nadler, Jr., Hyperspaces, Dekker, New York, 1999. 
  5. [5] S. B. Nadler, Jr., Hyperspaces of Sets, Dekker, New York, 1978. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.