The Frattini Subgroup of Locally Free Groups.
Samuel Poss (1975)
Mathematische Zeitschrift
Similarity:
Samuel Poss (1975)
Mathematische Zeitschrift
Similarity:
Jan Mycielski (1958)
Fundamenta Mathematicae
Similarity:
Benjamin Fine, Gerhard Rosenberger, Michael Stille (1997)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
Here we consider two classes of torsion-free one-relator groups which have proved quite amenable to study-the cyclically pinched one-relator groups and the conjugacy pinched one-relator groups. The former is the class of groups which are free products of free groups with cyclic amalgamations while the latter is the class of HNN extensions of free groups with cyclic associated subgroups. Both are generalizations of surface groups. We compare and contrast results in these classes relative...
Stanisław Balcerzyk, Jan Mycielski (1957)
Fundamenta Mathematicae
Similarity:
Kharlampovich, Olga, Myasnikov, Alexei (1998)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Similarity:
Tieudjo, D. (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Janusz Wysoczański (1988)
Colloquium Mathematicae
Similarity:
László Fuchs, Gerhardus Viljoen (1999)
Czechoslovak Mathematical Journal
Similarity:
Tieudjo, D., Moldavanskii, D.I. (2010)
International Journal of Mathematics and Mathematical Sciences
Similarity:
P. A. Zalesskii (1999)
Disertaciones Matemáticas del Seminario de Matemáticas Fundamentales
Similarity:
Grzegorz Tomkowicz (2011)
Colloquium Mathematicae
Similarity:
We prove the following conjecture of J. Mycielski: There exists a free nonabelian group of piecewise linear, orientation and area preserving transformations which acts on the punctured disk {(x,y) ∈ ℝ²: 0 < x² + y² < 1} without fixed points.