Planable and smooth dendroids
Mackowiak, T.
Similarity:
Mackowiak, T.
Similarity:
T. Maćkowiak (1976)
Fundamenta Mathematicae
Similarity:
J. Krasinkiewicz, Piotr Minc (1979)
Fundamenta Mathematicae
Similarity:
Janusz Charatonik, Z. Grabowski (1978)
Fundamenta Mathematicae
Similarity:
Sam Nadler, J. Quinn (1973)
Fundamenta Mathematicae
Similarity:
Charatonik, Janusz J., Charatonik, Włodzimierz J. (2000)
Mathematica Pannonica
Similarity:
Sam Nadler (1980)
Fundamenta Mathematicae
Similarity:
Jo Heath, Van C. Nall (2003)
Fundamenta Mathematicae
Similarity:
In 1940, O. G. Harrold showed that no arc can be the exactly 2-to-1 continuous image of a metric continuum, and in 1947 W. H. Gottschalk showed that no dendrite is a 2-to-1 image. In 2003 we show that no arc-connected treelike continuum is the 2-to-1 image of a continuum.
Charatonik, Janusz J. (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Wojciech Dębski, J. Heath, J. Mioduszewski (1992)
Fundamenta Mathematicae
Similarity:
It is known that no dendrite (Gottschalk 1947) and no hereditarily indecomposable tree-like continuum (J. Heath 1991) can be the image of a continuum under an exactly 2-to-1 (continuous) map. This paper enlarges the class of tree-like continua satisfying this property, namely to include those tree-like continua whose nondegenerate proper subcontinua are arcs. This includes all Knaster continua and Ingram continua. The conjecture that all tree-like continua have this property, stated...
Janusz J. Charatonik, Włodzimierz J. Charatonik, Janusz R. Prajs (2003)
Colloquium Mathematicae
Similarity:
We investigate absolute retracts for hereditarily unicoherent continua, and also the continua that have the arc property of Kelley (i.e., the continua that satisfy both the property of Kelley and the arc approximation property). Among other results we prove that each absolute retract for hereditarily unicoherent continua (for tree-like continua, for λ-dendroids, for dendroids) has the arc property of Kelley.