The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Universal functions”

Borel extensions of Baire measures in ZFC

Menachem Kojman, Henryk Michalewski (2011)

Fundamenta Mathematicae

Similarity:

We prove: 1) Every Baire measure on the Kojman-Shelah Dowker space admits a Borel extension. 2) If the continuum is not real-valued-measurable then every Baire measure on M. E. Rudin's Dowker space admits a Borel extension. Consequently, Balogh's space remains the only candidate to be a ZFC counterexample to the measure extension problem of the three presently known ZFC Dowker spaces.

Non-separable Borel sets

A. H. Stone

Similarity:

CONTENTS1. Introduction.................................................................................. 32. Baire spaces................................................................................ 53. The basic theorem..................................................................... 94. Cardinality properties; invariance of weight........................... 165. Classification of absolute Borel sets..................................... 226. Characterizations..........................................................................

The Borel structure of some non-Lebesgue sets

Don L. Hancock (2004)

Colloquium Mathematicae

Similarity:

For a given function in some classes related to real derivatives, we examine the structure of the set of points which are not Lebesgue points. In particular, we prove that for a summable approximately continuous function, the non-Lebesgue set is a nowhere dense nullset of at most Borel class 4.

On the complexity of Hamel bases of infinite-dimensional Banach spaces

Lorenz Halbeisen (2001)

Colloquium Mathematicae

Similarity:

We call a subset S of a topological vector space V linearly Borel if for every finite number n, the set of all linear combinations of S of length n is a Borel subset of V. It is shown that a Hamel basis of an infinite-dimensional Banach space can never be linearly Borel. This answers a question of Anatoliĭ Plichko.

On the difference property of Borel measurable functions

Hiroshi Fujita, Tamás Mátrai (2010)

Fundamenta Mathematicae

Similarity:

If an atomlessly measurable cardinal exists, then the class of Lebesgue measurable functions, the class of Borel functions, and the Baire classes of all orders have the difference property. This gives a consistent positive answer to Laczkovich's Problem 2 [Acta Math. Acad. Sci. Hungar. 35 (1980)]. We also give a complete positive answer to Laczkovich's Problem 3 concerning Borel functions with Baire-α differences.

Stationary reflection and the universal Baire property

Stuart Zoble (2006)

Fundamenta Mathematicae

Similarity:

We show that ω₁-Universally Baire self-justifying systems are fully Universally Baire under the Weak Stationary Reflection Principle for Pairs. This involves analyzing the notion of a weakly captured set of reals, a weakening of the Universal Baire Property.