Displaying similar documents to “An operator invariant for handlebody-knots”

Virtual knot invariants arising from parities

Denis Petrovich Ilyutko, Vassily Olegovich Manturov, Igor Mikhailovich Nikonov (2014)

Banach Center Publications

Similarity:

In [12, 15] it was shown that in some knot theories the crucial role is played by parity, i.e. a function on crossings valued in {0,1} and behaving nicely with respect to Reidemeister moves. Any parity allows one to construct functorial mappings from knots to knots, to refine many invariants and to prove minimality theorems for knots. In the present paper, we generalise the notion of parity and construct parities with coefficients from an abelian group rather than ℤ₂ and investigate...

Virtual knot theory-unsolved problems

Roger Fenn, Louis H. Kauffman, Vassily O. Manturov (2005)

Fundamenta Mathematicae

Similarity:

The present paper gives a quick survey of virtual and classical knot theory and presents a list of unsolved problems about virtual knots and links. These are all problems in low-dimensional topology with a special emphasis on virtual knots. In particular, we touch new approaches to knot invariants such as biquandles and Khovanov homology theory. Connections to other geometrical and combinatorial aspects are also discussed.

Virtual Legendrian isotopy

Vladimir Chernov, Rustam Sadykov (2016)

Fundamenta Mathematicae

Similarity:

An elementary stabilization of a Legendrian knot L in the spherical cotangent bundle ST*M of a surface M is a surgery that results in attaching a handle to M along two discs away from the image in M of the projection of the knot L. A virtual Legendrian isotopy is a composition of stabilizations, destabilizations and Legendrian isotopies. A class of virtual Legendrian isotopy is called a virtual Legendrian knot. In contrast to Legendrian knots, virtual Legendrian knots...

Applications of topology to DNA

Isabel Darcy, De Sumners (1998)

Banach Center Publications

Similarity:

The following is an expository article meant to give a simplified introduction to applications of topology to DNA.

Positive knots, closed braids and the Jones polynomial

Alexander Stoimenow (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Using the recent Gauß diagram formulas for Vassiliev invariants of Polyak-Viro-Fiedler and combining these formulas with the Bennequin inequality, we prove several inequalities for positive knots relating their Vassiliev invariants, genus and degrees of the Jones polynomial. As a consequence, we prove that for any of the polynomials of Alexander/Conway, Jones, HOMFLY, Brandt-Lickorish-Millett-Ho and Kauffman there are only finitely many positive knots with the same polynomial and no...

Wirtinger presentations for higher dimensional manifold knots obtained from diagrams

Seiichi Kamada (2001)

Fundamenta Mathematicae

Similarity:

A Wirtinger presentation of a knot group is obtained from a diagram of the knot. T. Yajima showed that for a 2-knot or a closed oriented surface embedded in the Euclidean 4-space, a Wirtinger presentation of the knot group is obtained from a diagram in an analogous way. J. S. Carter and M. Saito generalized the method to non-orientable surfaces in 4-space by cutting non-orientable sheets of their diagrams by some arcs. We give a modification to their method so that one does not need...

Unknotting number and knot diagram.

Yasutaka Nakanishi (1996)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

This note is a continuation of a former paper, where we have discussed the unknotting number of knots with respect to knot diagrams. We will show that for every minimum-crossing knot-diagram among all unknotting-number-one two-bridge knot there exist crossings whose exchange yields the trivial knot, if the third Tait conjecture is true.

Edge number results for piecewise-Linear knots

Monica Meissen (1998)

Banach Center Publications

Similarity:

The minimal number of edges required to form a knot or link of type K is the edge number of K, and is denoted e(K). When knots are drawn with edges, they are appropriately called piecewise-linear or PL knots. This paper presents some edge number results for PL knots. Included are illustrations of and integer coordinates for the vertices of several prime PL knots.