Displaying similar documents to “An extension of distributional wavelet transform”

Wavelet transform for functions with values in UMD spaces

Cornelia Kaiser, Lutz Weis (2008)

Studia Mathematica

Similarity:

We extend the classical theory of the continuous and discrete wavelet transform to functions with values in UMD spaces. As a by-product we obtain equivalent norms on Bochner spaces in terms of g-functions.

Wavelets and prediction in time series

Mošová, Vratislava

Similarity:

Wavelets (see [2, 3, 4]) are a recent mathematical tool that is applied in signal processing, numerical mathematics and statistics. The wavelet transform allows to follow data in the frequency as well as time domain, to compute efficiently the wavelet coefficients using fast algorithm, to separate approximations from details. Due to these properties, the wavelet transform is suitable for analyzing and forecasting in time series. In this paper, Box-Jenkins models (see [1, 5]) combined...

Continuous wavelet transform on semisimple Lie groups and inversion of the Abel transform and its dual.

K. Trimèche (1996)

Collectanea Mathematica

Similarity:

In this work we define and study wavelets and continuous wavelet transform on semisimple Lie groups G of real rank l. We prove for this transform Plancherel and inversion formulas. Next using the Abel transform A on G and its dual A*, we give relations between the continuous wavelet transform on G and the classical continuous wavelet transform on Rl, and we deduce the formulas which give the inverse operators of the operators A and A*.

Application of the Haar wavelet method for solution the problems of mathematical calculus

Ü. Lepik, H. Hein (2015)

Waves, Wavelets and Fractals

Similarity:

In recent times the wavelet methods have obtained a great popularity for solving differential and integral equations. From different wavelet families we consider here the Haar wavelets. Since the Haar wavelets are mathematically most simple to be compared with other wavelets, then interest to them is rapidly increasing and there is a great number of papers,where thesewavelets are used tor solving problems of calculus. An overview of such works can be found in the survey paper by Hariharan...

Dimension functions, scaling sequences, and wavelet sets

Arambašić Ljiljana, Damir Bakić, Rajna Rajić (2010)

Studia Mathematica

Similarity:

The paper is a continuation of our study of dimension functions of orthonormal wavelets on the real line with dyadic dilations. The main result of Section 2 is Theorem 2.8 which provides an explicit reconstruction of the underlying generalized multiresolution analysis for any MSF wavelet. In Section 3 we reobtain a result of Bownik, Rzeszotnik and Speegle which states that for each dimension function D there exists an MSF wavelet whose dimension function coincides with D. Our method...