Displaying similar documents to “On v-positive type transformations in infinite measure”

Poisson suspensions of compactly regenerative transformations

Roland Zweimüller (2008)

Colloquium Mathematicae

Similarity:

For infinite measure preserving transformations with a compact regeneration property we establish a central limit theorem for visits to good sets of finite measure by points from Poissonian ensembles. This extends classical results about (noninteracting) infinite particle systems driven by Markov chains to the realm of systems driven by weakly dependent processes generated by certain measure preserving transformations.

Ergodicity and conservativity of products of infinite transformations and their inverses

Julien Clancy, Rina Friedberg, Indraneel Kasmalkar, Isaac Loh, Tudor Pădurariu, Cesar E. Silva, Sahana Vasudevan (2016)

Colloquium Mathematicae

Similarity:

We construct a class of rank-one infinite measure-preserving transformations such that for each transformation T in the class, the cartesian product T × T is ergodic, but the product T × T - 1 is not. We also prove that the product of any rank-one transformation with its inverse is conservative, while there are infinite measure-preserving conservative ergodic Markov shifts whose product with their inverse is not conservative.

A joint limit theorem for compactly regenerative ergodic transformations

David Kocheim, Roland Zweimüller (2011)

Studia Mathematica

Similarity:

We study conservative ergodic infinite measure preserving transformations satisfying a compact regeneration property introduced by the second-named author in J. Anal. Math. 103 (2007). Assuming regular variation of the wandering rate, we clarify the asymptotic distributional behaviour of the random vector (Zₙ,Sₙ), where Zₙ and Sₙ are respectively the time of the last visit before time n to, and the occupation time of, a suitable set Y of finite measure.

Ergodic properties of a class of discrete Abelian group extensions of rank-one transformations

Chris Dodd, Phakawa Jeasakul, Anne Jirapattanakul, Daniel M. Kane, Becky Robinson, Noah D. Stein, Cesar E. Silva (2010)

Colloquium Mathematicae

Similarity:

We define a class of discrete Abelian group extensions of rank-one transformations and establish necessary and sufficient conditions for these extensions to be power weakly mixing. We show that all members of this class are multiply recurrent. We then study conditions sufficient for showing that Cartesian products of transformations are conservative for a class of invertible infinite measure-preserving transformations and provide examples of these transformations.

On a pointwise ergodic theorem for multiparameter semigroups.

Ryotaro Sato (1994)

Publicacions Matemàtiques

Similarity:

Let Ti (i = 1, 2, ..., d) be commuting null preserving transformations on a finite measure space (X, F, μ) and let 1 ≤ p < ∞. In this paper we prove that for every f ∈ Lp(μ) the averages Anf(x) = (n + 1)-d Σ0≤ni≤n f(T1 n1 T2 n2...